UNIT 1 • RELATIONSHIPS BETWEEN QUANTITIES AND EXPRESSIONS
 Lesson 3: Interpreting Formulas and Expressions

Practice 1.3.4: Interpreting Complicated Expressions

For problems 1-4, use what you know about expressions to answer the questions.

1. Is the expression $\frac{5+3 x}{2}$ always equal to the expression $4 x$? Explain your answer.
2. What values of x make the expression $(2 x+1)(x-3)$ positive?
3. Is the expression $2 \cdot 4^{x}$ equal to the expression 8^{x} ? Explain your answer.
4. Is the expression $(5 \bullet 2)^{x}$ equal to the expression 10^{x} ? Explain your answer.

For problems 5 and 6, determine whether each expression is a quadratic expression. Explain your reasoning.
5. $(x+4)(5 x-11)$
6. $\left(2 x^{2}+9\right)(x-2)$

UNIT 1 • RELATIONSHIPS BETWEEN QUANTITIES AND EXPRESSIONS
Lesson 3: Interpreting Formulas and Expressions
For problems 7-10, translate any verbal expressions into algebraic expressions, and then answer the questions.
7. A transfer station charges $\$ 15$ for a waste disposal permit and an additional $\$ 5$ for each cubic yard of garbage it disposes of. This relationship can be described using the expression $15+5 x$. What effect, if any, does changing the value of x have on the cost of the permit?
8. A bank account balance for an account with an initial deposit of P dollars earns interest at an annual rate of r. The amount of money in the account after n years is described using the following expression: $P(1+r)^{n}$. What effect, if any, does decreasing the value of r have on the amount of money after n years?
9. A tire can hold C cubic feet of air. It loses a percentage of its air during each period of time, t. This rate of loss, written as a decimal, is r. This situation can be described using the following formula: $C(1-r)^{t}$. What effect, if any, does increasing the value of r have on the value of C ?
10. The surface area of a cube is the product of 6 and the square of the side length. How does the surface area of a cube change when the side of a cube doubles in length?

