UNIT 2 • REASONING WITH LIINEAR EQUATIONS AND INEQUALITIES

Lesson 10: Interpreting Linear Functions

Prerequisite Skills

This lesson requires the use of the following skills:

- reading and interpreting data from charts and tables (6.EE.9)
- understanding slope (8.EE.5)

Introduction

In previous lessons, we found the slope of the graph of a linear function using the slope formula, $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$. We also identified the slope of a line from a given equation by rewriting the equation in slope-intercept form, $y=m x+b$, where m is the slope of the line and b is the y-intercept. By calculating the slope, we are able to determine the rate of change, or the ratio between the change in the y-values and the corresponding change in the x-values. The rate of change can be determined from graphs, tables, and equations.

Key Concepts

- A ratio is the relation between two quantities. A ratio can be expressed in words, or as a fraction, decimal, or percent.
- A rate of change is a ratio describing how one quantity changes with respect to another quantity.
- Slope is a way to describe the rate of change of a function.
- The slope of a line is the ratio of the change in y-values and the change in x-values between two points.
- A positive rate of change signifies that a function increases as x increases.
- A negative rate of change signifies that a function decreases as x increases.
- Linear functions have a constant rate of change, meaning that the y-value increases or decreases the same amount for a given change in x. Linear functions may also be constant, which means that they don't increase or decrease.
- The rate of change of a function within an interval, or a continuous portion of a function, can be calculated.

UNIT 2 • REASONING WITH LIINEAR EQUATIONS AND INEQUALITIES

Lesson 10: Interpreting Linear Functions

Instruction

- The rate of change of a function within an interval is the average rate of change for the interval, defined by values of x in the domain of a function.
- Closed intervals can be noted using the format $[a, b]$, where a represents the initial x-value of the interval and b represents the final x-value of the interval. This is a closed interval because it includes the endpoints of the interval. Another way to state that the interval is closed is $a \leq x \leq b$.
- A linear function that has a slope of 0 is a horizontal line.
- Vertical lines have an undefined slope. This occurs when the denominator of the slope formula is equal to 0 .

Calculating Rate of Change from a Table

1. Choose two points from the table.
2. Assign the coordinates of one point to be $\left(x_{1}, y_{1}\right)$ and the other point to be $\left(x_{2}, y_{2}\right)$.
3. Substitute the values into the slope formula, $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.
4. If the difference between the x-coordinates is not 0 , the result is the rate of change between the two points.

- The rate of change between any two points of a linear function will be equal.

Calculating Rate of Change from an Equation of a Linear Function

1. Transform the given linear equation into slope-intercept form, $f(x)=m x+b$.
2. Identify the slope of the line as m from the equation.
3. The slope of the linear function is the rate of change between all pairs of points on the graph of the function.

UNIT 2 • REASONING WITH LIINEAR EQUATIONS AND INEQUALITIES

Lesson 10: Interpreting Linear Functions

Instruction

- To determine the rate of change of a function from a graph, first identify the coordinates of the endpoints of the interval being observed.
- Sometimes it is necessary to estimate the values for y.
- The resulting calculation may be an estimation of the rate of change for the interval identified for the given function.

Estimating Rate of Change from a Graph

4. Determine the interval to be observed.
5. Identify $\left(x_{1}, y_{1}\right)$ as the initial point of the interval.
6. Identify $\left(x_{2}, y_{2}\right)$ as the endpoint of the interval.
7. Substitute $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ into the slope formula to calculate the rate of change.
8. The result is the estimated rate of change for the interval between the two points identified.

Common Errors/Misconceptions

- incorrectly choosing the values of the indicated interval to calculate the rate of change
- substituting incorrect values into the slope formula
- interpreting interval notation as coordinates

