UNIT 2 • REASONING WITH LINEAR EQUATIONS AND INEQUALITIIES
Lesson 4: Solving Equations and Inequalities

Problem-Based Task 2.4.1: Magic Number Coaching Sample Responses

a. What number did you think of?

Responses will vary, but could include any number, such as 53 .
b. What expression represents doubling your number?

Using the number from part a, $2 \bullet 53$.
c. How can you show adding 6 to the expression from part b?

Using the expression from part b, $2 \bullet 53+6$.
d. How can you show taking half of the expression from part c ?

Using the expression from part c, $\frac{2 \cdot 53+6}{2}$.
e. How can you show subtracting the number you originally thought of from the expression in part d?
Using the expression from part d, $\frac{2 \bullet 53+6}{2}-53$.
f. How can you show that the result of the operations in parts b through e will always result in 3 ?

Using the expression from part d, $\frac{2 \cdot 53+6}{2}-53=3$.
g. How can you modify your equation in part f to work with any number?

Replace the value chosen in part a with the variable $x: \frac{2 x+6}{2}-x=3$.

UNIT 2 • REASONING WITH LIINEAR EQUATIONS AND INEQUALITIES
 Lesson 4: Solving Equations and Inequalities

Instruction

h. How can your equation from part g be simplified?

Begin by rewriting the term $\frac{2 x+6}{2}$ as a sum of two fractions.

$$
\frac{2 x}{2}+\frac{6}{2}-x=3
$$

Simplify each fraction.

$$
x+3-x=3
$$

Use the commutative property of addition to rewrite the expression on the left of the equal sign.

$$
x-x+3=3
$$

Combine like terms.

$$
3=3
$$

The operations performed on any number will always result in the number 3 .

Recommended Closure Activity

Select one or more of the essential questions for a class discussion or as a journal entry prompt.

