UNIT 2 • REASONING WITH LIINEAR EQUATIONS AND INEQUALITIES
 Lesson 7: Systems of Linear Equations

Guided Practice 2.7.2

Example 1

Solve the following system by substitution.

$$
\left\{\begin{array}{l}
x+y=2 \\
x-y=0
\end{array}\right.
$$

1. Solve one of the equations for one of the variables in terms of the other variable.

It doesn't matter which equation you choose, nor does it matter which variable you solve for.

Let's solve $x+y=2$ for the variable y.
Isolate y by subtracting x from both sides.

$$
\begin{aligned}
& x+y=2 \\
& -x \quad-x \\
& \hline y=2-x
\end{aligned}
$$

Now we know that y is equal to $2-x$.
2. Substitute $2-x$ for y in the other equation.

It helps to place parentheses around the expression you are substituting.

$$
\begin{array}{ll}
x-y=0 & \text { Second equation of the system } \\
x-(2-x)=0 & \text { Substitute } 2-x \text { for } y .
\end{array}
$$

UNIT 2 • REASONING WITH LINEAR EQUATIONS AND INEQUALITIES
 Lesson 7: Systems of Linear Equations

Instruction

3. Solve the equation for the remaining variable.
$x-(2-x)=0 \quad$ Equation from the previous step
$x-2+x=0 \quad$ Distribute the negative over $(2-x)$.
$2 x-2=0 \quad$ Combine like terms.
$2 x=2 \quad$ Add 2 to both sides.
$x=1 \quad$ Divide both sides by 2 .
4. Substitute the found value, $x=1$, into either of the original equations to find the value of the other variable.
$x+y=2 \quad$ First equation of the system
(1) $+y=2 \quad$ Substitute 1 for x.
$1+y=2 \quad$ Simplify.
$y=1 \quad$ Subtract 1 from both sides.
The solution to the system of equations is $(1,1)$. If graphed, the lines would intersect at $(1,1)$.

UNIT 2 • REASONING WITH LIINEAR EQUATIONS AND INEQUALITIES
 Lesson 7: Systems of Linear Equations

Instruction

Example 2

Solve the following system by elimination.

$$
\left\{\begin{array}{l}
2 x-3 y=-11 \\
x+3 y=11
\end{array}\right.
$$

1. Add the two equations if the coefficients of one of the variables are opposites of each other.

The coefficients 3 and -3 are opposites, so the equations can be added.
Add downward, combining like terms only.

$$
\begin{aligned}
& 2 x-3 y=-11 \\
& x+3 y=11 \\
& \hline 3 x+0=0
\end{aligned}
$$

Simplify.

$$
3 x=0
$$

2. Solve the equation for the second variable.

$$
\begin{array}{ll}
3 x=0 & \text { Equation from the previous step } \\
x=0 & \text { Divide both sides by } 3 .
\end{array}
$$

UNIT 2 • REASONING WITH LIINEAR EQUATIONS AND INEQUALITIES Lesson 7: Systems of Linear Equations

Instruction

3. Substitute the found value, $x=0$, into either of the original equations to find the value of the other variable.

$$
\begin{array}{ll}
2 x-3 y=-11 & \text { First equation of the system } \\
2(0)-3 y=-11 & \text { Substitute } 0 \text { for } x . \\
-3 y=-11 & \text { Simplify. } \\
y=\frac{11}{3} & \text { Divide both sides by }-3 .
\end{array}
$$

The solution to the system of equations is $\left(0, \frac{11}{3}\right)$.
If graphed, the lines would intersect at $\left(0, \frac{11}{3}\right)$.

Example 3

Solve the following system by elimination.

$$
\left\{\begin{array}{l}
x-3 y=5 \\
-2 x+6 y=4
\end{array}\right.
$$

1. Multiply each term of one equation by the same number.

The variable x has a coefficient of 1 in the first equation and a coefficient of -2 in the second equation.

Multiply the first equation by 2 .

$$
\begin{array}{ll}
x-3 y=5 & \text { Original equation } \\
2(x-3 y)=2(5) & \text { Multiply both sides of the equation by } 2 . \\
2 x-6 y=10 & \text { Simplify. }
\end{array}
$$

UNIT 2 • REASONING WITH LINEAR EQUATIONS AND INEQUALITIES
 Lesson 7: Systems of Linear Equations

Instruction

2. Add or subtract the two equations to eliminate one of the variables.

Replace the first equation in the system with the equivalent equation found in the previous step.

$$
\begin{array}{r}
2 x-6 y=10 \\
+(-2 x+6 y=4) \\
\hline 0+0=14
\end{array}
$$

3. Simplify.

$$
\begin{aligned}
& 0+0=14 \\
& 0=14
\end{aligned}
$$

This is NOT a true statement.

The system $\left\{\begin{array}{l}x-3 y=5 \\ -2 x+6 y=4\end{array}\right.$ does not have a solution. There are no points that will make both equations true, and the graphs of the two equations are parallel lines.

