UNIT 3 • MODELING AND ANALYZING QUADRATIC FUNCTIONS

Guided Practice 3.1.1

Example 1

Solve $2 x^{2}-5=195$ for x.

1. Isolate x^{2}.

$$
\begin{array}{ll}
2 x^{2}-5=195 & \text { Original equation } \\
2 x^{2}=200 & \text { Add } 5 \text { to both sides. } \\
x^{2}=100 & \text { Divide both sides by } 2 .
\end{array}
$$

2. Use a square root to find all possible solutions to the equation.

Take the square root of both sides. Remember that both 10^{2} and $(-10)^{2}$ equal 100 , so there are two roots for this equation.

$$
x= \pm \sqrt{100}= \pm 10
$$

The equation $2 x^{2}-5=195$ has two solutions, 10 and -10 .

Example 2

Solve $4(x+3)^{2}-10=-6$ for x.

1. Isolate the squared binomial and take the square root of both sides of the equation.

$$
\begin{array}{ll}
4(x+3)^{2}-10=-6 & \text { Original equation } \\
4(x+3)^{2}=4 & \text { Add 10 to both sides. } \\
(x+3)^{2}=1 & \text { Divide both sides by } 4 . \\
x+3= \pm \sqrt{1} & \text { Take the square root of both sides. } \\
x+3= \pm 1 & \text { Simplify. }
\end{array}
$$

UNIT 3 • MODELING AND ANALYZING QUADRATIC FUNCTIONS

Lesson 1: Creating and Solving Quadratic Equations in One Variable

Instruction
2. Isolate x.

$$
\begin{array}{ll}
x+3= \pm 1 & \text { Equation from the previous step } \\
x=-3 \pm 1 & \text { Subtract } 3 \text { from both sides }
\end{array}
$$

3. Separate the equation into two equations and solve.

$$
\begin{aligned}
& x=-3+1=-2 \\
& x=-3-1=-4
\end{aligned}
$$

The equation $4(x+3)^{2}-10=-6$ has two solutions, -2 and -4 .

Example 3

Solve $(x-1)^{2}+15=-1$ for x.

1. Isolate the squared binomial.
$(x-1)^{2}+15=-1 \quad$ Original equation
$(x-1)^{2}=-16 \quad$ Subtract 15 from both sides.
2. Take the square root of both sides to isolate the binomial.

$$
\begin{array}{ll}
(x-1)^{2}=-16 & \text { Equation from the previous step } \\
x-1= \pm \sqrt{-16} & \text { Take the square root of both sides. }
\end{array}
$$

3. Determine the solution, if one exists.

There is a negative number under the radical, so the equation has no real solutions.

The equation $(x-1)^{2}+15=-1$ has no real solutions.

