UNIT 3 • MODELING AND ANALYZING QUADRATIC FUNCTIONS
Lesson 3: Interpreting and Analyzing Quadratic Functions

Instruction

Guided Practice 3.3.3

Example 1

Calculate the average rate of change for the function $f(x)=x^{2}+6 x+9$ between $x=1$ and $x=3$.

1. Evaluate the function for $x=3$.

$$
\begin{array}{ll}
f(x)=x^{2}+6 x+9 & \\
\text { Original function } \\
f(3)=(3)^{2}+6(3)+9 & \\
\text { Substitute } 3 \text { for } x . \\
f(3)=36 & \\
\text { Simplify } .
\end{array}
$$

2. Evaluate the function for $x=1$.

$$
\begin{array}{ll}
f(x)=x^{2}+6 x+9 & \text { Original function } \\
f(1)=(1)^{2}+6(1)+9 & \text { Substitute } 1 \text { for } x . \\
f(1)=16 & \text { Simplify }
\end{array}
$$

3. Use the average rate of change formula to determine the average rate of change between $x=1$ and $x=3$.

$$
\begin{aligned}
& \text { Average rate of change }=\frac{f(b)-f(a)}{b-a} \\
& \text { Average rate of change formula } \\
& \text { Average rate of change }=\frac{f(3)-f(1)}{3-1}
\end{aligned} \text { Substitute } 1 \text { for } a \text { and } 3 \text { for } b . ~ \begin{aligned}
& \text { Substitute the values for } f(3) \\
& \text { and } f(1) . \\
& \text { Average rate of change }=\frac{36-16}{2}
\end{aligned} \begin{aligned}
& \text { Simplify. } \\
& \text { Average rate of change }=10
\end{aligned} \begin{aligned}
& \text { The average rate of change of } f(x)=x^{2}+6 x+9 \text { between } x=1 \\
& \text { and } x=3 \text { is } 10 .
\end{aligned}
$$

UNIT $3 \cdot \operatorname{MODELING}$ AND ANALYZING QUADRATIC FUNCTIONS

Example 2

Use the graph of the function to calculate the average rate of change between $x=-3$ and $x=-2$.

1. Use the graph to identify $f(-2)$.

According to the graph, $f(-2)=-1$.
2. Use the graph to identify $f(-3)$.

According to the graph, $f(-3)=2$.
3. Use the average rate of change formula to calculate the average rate of change between $x=-3$ and $x=-2$.

$$
\begin{array}{ll}
\text { Average rate of change }=\frac{f(b)-f(a)}{b-a} & \text { Average rate of change formula } \\
\text { Average rate of change }=\frac{f(-2)-f(-3)}{(-2)-(-3)} & \text { Substitute }-3 \text { for } a \text { and }-2 \text { for } b . \\
\text { Average rate of change }=\frac{-1-2}{1} & \begin{array}{l}
\text { Substitute the values for } f(-3) \\
\text { and } f(-2) .
\end{array} \\
\text { Average rate of change }=-3 & \text { Simplify. }
\end{array}
$$

The average rate of change of the function between $x=-3$ and $x=-2$ is -3 .

UNIT $3 \cdot \operatorname{MODELING}$ AND ANALYZING QUADRATIC FUNCTIONS

Lesson 3: Interpreting and Analyzing Quadratic Functions

Instruction

Example 3

For the function $g(x)=(x-3)^{2}-2$, is the average rate of change greater between $x=-1$ and $x=0$ or between $x=1$ and $x=2$?

1. Calculate the average rate of change between $x=-1$ and $x=0$.

Evaluate the function at $x=-1$ and $x=0$.

$$
\begin{aligned}
& \text { For } \boldsymbol{x}=\mathbf{- 1}: \\
& \qquad \begin{array}{l}
g(x)=(x-3)^{2}-2 \\
g(-1)=[(-1)-3]^{2}-2 \\
g(-1)=14
\end{array}
\end{aligned}
$$

$$
\text { For } x=0 \text { : }
$$

$$
g(x)=(x-3)^{2}-2
$$

$$
g(0)=[(0)-3]^{2}-2
$$

$$
g(0)=7
$$

$$
\begin{array}{ll}
\text { Average rate of change }=\frac{g(b)-g(a)}{b-a} & \text { Average rate of change formula } \\
\text { Average rate of change }=\frac{g(0)-g(-1)}{0-(-1)} & \text { Substitute }-1 \text { for } a \text { and } 0 \text { for } b . \\
\text { Average rate of change }=\frac{7-14}{1} & \begin{array}{l}
\text { Substitute the values for } \\
g(-1) \text { and } g(0) .
\end{array} \\
\text { Average rate of change }=-7 & \text { Simplify. }
\end{array}
$$

The average rate of change between $x=-1$ and $x=0$ is -7 .

UNIT 3 • MODELING AND ANALYZING QUADRATIC FUNCTIONS
Lesson 3: Interpreting and Analyzing Quadratic Functions
Instruction
2. Calculate the average rate of change between $x=1$ and $x=2$.

Evaluate the function at $x=1$ and $x=2$.

$$
\text { For } x=2:
$$

$$
\begin{aligned}
& g(x)=(x-3)^{2}-2 \\
& g(2)=[(2)-3]^{2}-2 \\
& g(2)=-1
\end{aligned}
$$

Average rate of change $=\frac{g(b)-g(a)}{b-a} \quad$ Average rate of change formula
Average rate of change $=\frac{g(2)-g(1)}{2-1} \quad$ Substitute 1 for a and 2 for b.
Average rate of change $=\frac{-1-2}{1} \quad$ Substitute the values for $g(1)$
Average rate of change $=-3 \quad$ Simplify.
The average rate of change between $x=1$ and $x=2$ is -3 .
3. Compare the averages.

Since $-3>-7$, the average rate of change of $g(x)=(x-3)^{2}-2$ is greater between $x=1$ and $x=2$ than it is between $x=-1$ and $x=0$.

$$
\begin{aligned}
& \text { For } \boldsymbol{x}=1 \text { : } \\
& g(x)=(x-3)^{2}-2 \\
& g(1)=[(1)-3]^{2}-2 \\
& g(1)=2
\end{aligned}
$$

UNIT $3 \cdot \operatorname{MODELING}$ AND ANALYZING QUADRATIC FUNCTIONS

Lesson 3: Interpreting and Analyzing Quadratic Functions

Example 4

Find the average rate of change between $x=-0.75$ and $x=-0.25$ for the following function.

\boldsymbol{x}	$\boldsymbol{g}(\boldsymbol{x})$
-1	0
-0.75	3.44
-0.5	6.25
-0.25	8.44
0	10
0.25	10.94

1. Identify the output values when $x=-0.75$ and $x=-0.25$.

Refer to the table.
When $x=-0.75, g(x)=3.44$.
When $x=-0.25, g(x)=8.44$.
2. Calculate the average rate of change between $x=-0.75$ and $x=-0.25$ by applying the average rate of change formula.

$$
\begin{array}{ll}
\text { Average rate of change }=\frac{g(b)-g(a)}{b-a} & \begin{array}{l}
\text { Average rate of change } \\
\text { formula }
\end{array} \\
\text { Average rate of change }=\frac{g(-0.25)-g(-0.75)}{-0.25-(-0.75)} & \begin{array}{l}
\text { Substitute }-0.75 \text { for } a \\
\text { and }-0.25 \text { for } b .
\end{array} \\
\text { Average rate of change }=\frac{8.44-3.44}{-0.25-(-0.75)} & \begin{array}{l}
\text { Substitute the values for } \\
g(-0.75) \text { and } g(-0.25) .
\end{array} \\
\text { Average rate of change }=\frac{5}{0.5} & \text { Simplify. } \\
\text { Average rate of change }=10 & \\
\text { The average rate of change of the function between } x=-0.75 \\
\text { and } x=-0.25 \text { is } 10 .
\end{array}
$$

