Α

UNIT 3 • MODELING AND ANALYZING QUADRATIC FUNCTIONS Lesson 3: Interpreting and Analyzing Quadratic Functions

Practice 3.3.3: Identifying the Average Rate of Change

For problems 1–6, calculate the average rate of change of each function between x = -1 and x = 1.

- 1. $f(x) = 2(x+1)^2 3$
- 2. $g(x) = 4 3(x 1)^2$
- 3. $h(x) = x^2 4x + 6$

5.

x	у
-2	-1
-1.5	-1.75
-1	-4
-0.5	-7.75
0	-13
0.5	-19.75
1	-28
1.5	-37.75

continued

UNIT 3 • MODELING AND ANALYZING QUADRATIC FUNCTIONS Lesson 3: Interpreting and Analyzing Quadratic Functions

For problems 7–9, determine whether the average rate of change is greater between x = -2 and x = 0 or between x = 0 and x = 2.

- 7. $y = \frac{1}{2}(x+2)^2 3$
- 8. $a(x) = -x^2 + 8x + 3$
- 9. $f(x) = 5x^2 6x + 4$

Read the scenario and use the information in it to answer the question.

10. A drop of rain falls from a height of 1,400 feet above the ground. The function $h(t) = -16t^2 + 1400$ is used to model the raindrop's height, h(t), in feet *t* seconds after it starts to fall. What is the raindrop's average rate of change between 2 seconds and 3 seconds after it falls?