UNIT 3 • MODELING AND ANALYZING QUADRATIC FUNCTIONS

Lesson 3: Interpreting and Analyzing Quadratic Functions

Practice 3.3.3: Identifying the Average Rate of Change

For problems 1-6, calculate the average rate of change of each function between $x=-1$ and $x=1$.

1. $f(x)=2(x+1)^{2}-3$
2. $g(x)=4-3(x-1)^{2}$
3. $h(x)=x^{2}-4 x+6$
4.

5.

\boldsymbol{x}	\boldsymbol{y}
-2	-1
-1.5	-1.75
-1	-4
-0.5	-7.75
0	-13
0.5	-19.75
1	-28
1.5	-37.75

UNIT 3 • MODELING AND ANALYZING QUADRATIC FUNCTIONS

Lesson 3: Interpreting and Analyzing Quadratic Functions

6.

For problems 7-9, determine whether the average rate of change is greater between $x=-2$ and $x=0$ or between $x=0$ and $x=2$.
7. $y=\frac{1}{2}(x+2)^{2}-3$
8. $a(x)=-x^{2}+8 x+3$
9. $f(x)=5 x^{2}-6 x+4$

Read the scenario and use the information in it to answer the question.
10. A drop of rain falls from a height of 1,400 feet above the ground. The function $h(t)=-16 t^{2}+1400$ is used to model the raindrop's height, $h(t)$, in feet t seconds after it starts to fall. What is the raindrop's average rate of change between 2 seconds and 3 seconds after it falls?

