UNIT 4 • MODELING AND ANALYZING EXPONENTIAL FUNCTIONS
Lesson 2: Domain and Range of Exponential Functions

Guided Practice 4.2.1

Example 1

Use the following graph to identify the domain and range of the function $f(x)=2^{x}$.

1. Identify the domain.

The domain is the set of x-values that are valid for the function. This graph goes on infinitely; so, the domain can be any real x-value.

Domain: \{all real numbers\}
2. Identify the range.

The range is the set of y-values that are valid for the function.
The range will never go below 0 . In fact, the range never actually reaches 0 . The upper end of the range, however, is limitless.

Range: $\{y>0\}$

UNIT 4 • MODELIING AND ANALYZING EXPONENTIAL FUNCTIONS
Lesson 2: Domain and Range of Exponential Functions

Instruction

Example 2

Identify the domain and range of the function $f(x)=3 \bullet 6^{x}-7$.

1. Identify the domain.

The domain of an exponential function is all real numbers.
Therefore, the domain of $f(x)=3 \bullet 6^{x}-7$ is $(-\infty, \infty)$, or \{all real numbers\}.
2. Identify the range.

As x increases toward positive infinity, the value of $f(x)=3 \bullet 6^{x}-7$ becomes bigger without limit. So, the upper end of the range is positive infinity.

As x decreases toward negative infinity, the value of $f(x)=3 \bullet 6^{x}-7$ gets closer and closer to -7 :

\boldsymbol{x}	$\mathbf{3} \bullet \mathbf{6}^{\boldsymbol{x}}-\mathbf{7}$
0	-4
-1	$\frac{1}{2}-7=-6.5$
-5	$\frac{1}{2 \bullet 6^{4}}-7 \approx-6.9996$
-10	$\frac{1}{2 \bullet 6^{9}}-7 \approx-6.99999995$

Therefore, $f(x)=3 \bullet 6^{x}-7$ gets closer and closer to -7 as x decreases toward negative infinity, although it will never reach -7 . This is because the function has a horizontal asymptote at $y=-7$.

This means that the range of $f(x)=3 \bullet 6^{x}-7$ is $(-7, \infty)$, or $-7<x<\infty$.

UNIT 4 • MODELIING AND ANALYZING EXPONENTIAL FUNCTIONS
Lesson 2: Domain and Range of Exponential Functions

Instruction

Example 3

A population of bacteria doubles every 4 hours according to the function $f(x)=32 \cdot 2^{0.25 x}$. Find the domain and range of the function.

1. Identify the domain.

An exponential function has a domain of all real numbers, but we must consider the context of the problem. Because time cannot be negative, the domain is all real numbers greater than or equal to 0 .
So, the domain of $f(x)=32 \bullet 2^{0.25 x}$ is $[0, \infty)$, or $x \geq 0$.
2. Identify the range.

The range is the set of $f(x)$ values that are valid for the function.
Because the function gets bigger as x increases, the smallest value will occur at $x=0$. The upper end of the range is limitless.

To find the lower end of the range, evaluate $f(x)=32 \bullet 2^{0.25 x}$ for $x=0$:

$$
\begin{array}{ll}
f(x)=32 \bullet 2^{0.25 x} & \text { Original function } \\
f(0)=32 \bullet 2^{0.25(0)} & \text { Substitute } 0 \text { for } x . \\
f(0)=32 \bullet 2^{0} & \text { Simplify. } \\
f(0)=32 \bullet 1 & \text { Evaluate the exponent. } \\
f(0)=32 & \text { Simplify. }
\end{array}
$$

Therefore, the range of $f(x)=32 \bullet 2^{0.25 x}$ is $(32, \infty)$, or $f(x) \geq 32$.

UNIT 4 • MODELING AND ANALYZING EXPONENTIAL FUNCTIONS

Lesson 2: Domain and Range of Exponential Functions

Instruction

Example 4

A certificate of deposit, or CD, earns interest faster than a regular savings account. However, once you open a CD, you can't add or withdraw any money from it for a set number of years. Rocky has $\$ 3,000$ that he plans to put in a CD. The CD pays 8% interest, compounded yearly, and lasts 5 years. At the end of the 5 years, Rocky plans to put the money from the CD into a regular savings account that already holds $\$ 500$ but earns no interest. The total money Rocky has in both the CD and his savings account is represented by the function $f(x)=3000 \cdot 1.08^{x}+500$. Identify the domain and range for this situation. Will Rocky eventually have more than $\$ 4,000$ in total? If so, starting when?

1. Identify the domain.

The domain will begin at $x=0$, because time cannot be negative. It will end at $x=5$ because the CD ends after 5 years. Additionally, the domain includes only whole numbers, because the CD pays interest yearly.

So, the domain for this situation is $\{0,1,2,3,4,5\}$.
2. Identify the range.

The range of the function will be the outputs for the domain values. To find the range, evaluate $f(x)=3000 \cdot 1.08^{x}+500$ for every term of the domain. The results are compiled in the following table:

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
0	$3000 \bullet 1.08^{(0)}+500=\$ 3,500$
1	$3000 \bullet 1.08^{(1)}+500=\$ 3,740$
2	$3000 \bullet 1.08^{(2)}+500=\$ 3,999.20$
3	$3000 \bullet 1.08^{(3)}+500 \approx \$ 4,279.14$
4	$3000 \bullet 1.08^{(4)}+500 \approx \$ 4,581.47$
5	$3000 \bullet 1.08^{(5)}+500 \approx \$ 4,907.98$

So, the range for this situation is $\{3500,3740,3999.20,4279.14$, 4581.47, 4907.98\}.

UNIT 4 • MODELING AND ANALYZING EXPONENTIAL FUNCTIONS
 Lesson 2: Domain and Range of Exponential Functions

3. Determine whether Rocky will ever have more than $\$ 4,000$. If he does, identify the point at which this happens.

In the previous step, we found the range is $\{3500,3740,3999.20$, $4279.14,4581.47,4907.98\}$. The fourth entry in the range, $\$ 4,279.14$, is greater than $\$ 4,000$, so we know Rocky will eventually have more than $\$ 4,000$ in savings. This value of $f(x)$ corresponds to $x=3$.

Rocky will have more than $\$ 4,000$ after 3 years, at which point he will have $\$ 4,279.14$ in total.

