UNIT 4 • MODELIING AND ANALYZING EXPONENTIAL FUNCTIONS
Lesson 3: Geometric Sequences

Instruction

Guided Practice 4.3.1

Example 1

Find the common ratio, write the explicit formula, and find the seventh term for the following geometric sequence.

$$
3,1.5,0.75,0.375, \ldots
$$

1. Find the common ratio by dividing two successive terms.

$$
1.5 \div 3=0.5
$$

2. Confirm that the ratio is the same between each remaining pair of consecutive terms.

$$
\begin{aligned}
& 0.75 \div 1.5=0.5 \text { and } 0.375 \div 0.75=0.5 \\
& r=0.5
\end{aligned}
$$

3. Identify the first term, a_{1}.

$$
a_{1}=3
$$

4. Write the explicit formula.

$$
\begin{array}{ll}
a_{n}=a_{1} \bullet r^{n-1} & \text { Explicit formula for a geometric sequence } \\
a_{n}=(3)(0.5)^{n-1} & \text { Substitute } 3 \text { for } a_{1} \text { and } 0.5 \text { for } r .
\end{array}
$$

5. To find the seventh term, substitute 7 for n.

$$
\begin{array}{ll}
a_{n}=(3)(0.5)^{n-1} & \text { Explicit formula from the previous step } \\
a_{(7)}=(3)(0.5)^{(7)-1} & \text { Substitute } 7 \text { for } n . \\
a_{7}=(3)(0.5)^{6} & \text { Simplify. } \\
a_{7}=(3)(0.015625) & \text { Raise } 0.5 \text { to the } 6 \text { th power. } \\
a_{7}=0.046875 & \text { Multiply. }
\end{array}
$$

The seventh term in the sequence is 0.046875 .

UNIT 4 • MODELING AND ANALYZING EXPONENTIIAL FUNCTIONS
Lesson 3: Geometric Sequences

Instruction

Example 2

The fifth term of a geometric sequence is 1,792 . The common ratio is 4 . Write an explicit formula for the sequence, and then write the corresponding exponential function.

1. The fifth term is 1,792 ; therefore $n=5$ and $a_{5}=1792$.
2. The common ratio is 4 ; therefore, $r=4$.
3. Substitute the known values into the explicit formula for a geometric sequence and solve for a_{1}.

$$
\begin{array}{ll}
a_{n}=a_{1} \bullet r^{n-1} & \text { Explicit formula for a geometric sequence } \\
(1792)=a_{1}(4)^{(5)-1} & \text { Substitute 1,792 for } a_{n}, 4 \text { for } r, \text { and } 5 \text { for } n . \\
1792=a_{1}(256) & \text { Simplify. } \\
a_{1}=7 &
\end{array}
$$

4. Write the explicit formula.
$a_{n}=a_{1} \cdot r^{n-1} \quad$ Explicit formula for a geometric sequence
$a_{n}=(7)(4)^{n-1} \quad$ Substitute 7 for a_{1} and 4 for r.
5. Write the explicit formula in function notation.

$$
f(x)=7(4)^{x-1}
$$

Note that the domain of a geometric sequence is consecutive positive integers.

UNIT 4 • MODELING AND ANALYZING EXPONENTIAL FUNCTIONS

Lesson 3: Geometric Sequences

Instruction

Example 3

A geometric sequence is defined recursively by $a_{n}=\left(a_{n-1}\right)\left(-\frac{1}{3}\right)$, with $a_{1}=729$. Find the first 5 terms of the sequence, write an explicit formula to represent the sequence, then find the eighth term.

1. Use the recursive formula, beginning with a_{1}, to calculate the next 4 terms. We are given that the first term, a_{1}, is 729 . Substitute $2,3,4$, and 5 , respectively, for n in the recursive formula $a_{n}=\left(a_{n-1}\right)\left(-\frac{1}{3}\right)$ to find the next 4 terms.

$$
\begin{aligned}
& a_{1}=729 \\
& a_{2}=(729)\left(-\frac{1}{3}\right)=-243 \\
& a_{3}=(-243)\left(-\frac{1}{3}\right)=81 \\
& a_{4}=(81)\left(-\frac{1}{3}\right)=-27 \\
& a_{5}=(-27)\left(-\frac{1}{3}\right)=9
\end{aligned}
$$

The first five terms of the sequence are $729,-243,81,-27$, and 9 .
2. Write the explicit formula for this sequence.

The first term is $a_{1}=729$ and the common ratio is $r=-\frac{1}{3}$, so the explicit formula is $a_{n}=(729)\left(-\frac{1}{3}\right)^{n-1}$.
3. Use the formula to find the requested term.

We are asked to find the eighth term in this sequence. Substitute 8 for n and evaluate.

$$
\begin{array}{ll}
a_{n}=(729)\left(-\frac{1}{3}\right)^{n-1} & \begin{array}{l}
\text { Explicit formula from the } \\
\text { previous step }
\end{array} \\
a_{(8)}=(729)\left(-\frac{1}{3}\right)^{(8)-1} & \text { Substitute } 8 \text { for } n . \\
a_{8}=(729)\left(-\frac{1}{3}\right)^{7} & \text { Simplify. } \\
a_{8}=(729)\left(-\frac{1}{2187}\right) & \text { Raise }-\frac{1}{3} \text { to the 7th power. } \\
a_{8}=-\frac{1}{3} & \text { Multiply. } \\
\text { The eighth term of the sequence is }-\frac{1}{3} .
\end{array}
$$

