UNIT $6 \cdot$ DESCRIBING DATA

Lesson 3: Interpreting Linear Models

Instruction

Prerequisite Skills

This lesson requires the use of the following skills:

- creating a scatter plot given data in a table (8.SP.1)
- finding a linear fit given a scatter plot (S-ID.6c)
- understanding the connection between a graph and an equation of a linear function (8.F.3)
- determining the slope and y-intercept of a linear function given a graph or an equation (8.F.4)

Introduction

When linear functions are used to model real-world relationships, the slope and y-intercept of the linear function can be interpreted in context. Recall that data in a scatter plot can be approximated using a linear fit, or linear function that models real-world relationships. A linear fit is the approximation of data using a linear function.

The slope of a linear function is the change in the dependent variable divided by the change in the independent variable. When written as a decimal, the slope describes how much y changes when x changes by 1 . When analyzing the slope in the context of a real-world situation, remember to use the units of x and y in the calculation of the slope. For example, if the x-axis of a graph represents hours and the y-axis represents miles traveled, the slope of a linear function graphed on these axes would be $\frac{\text { change in miles }}{\text {, or the miles traveled each hour. }}$
change in hours
The \boldsymbol{y}-intercept of a function is the value of y at which the graph of the function intersects the y-axis, or the value of y when x equals 0 . When analyzing the y-intercept in a real-world context, it is the initial value of whatever quantity is represented by the y-axis. For example, if the x-axis represents hours and the y-axis represents miles traveled, the y-intercept would be the miles traveled when the number of hours equals 0 . The y-intercept in the equation $y=m x+b$ is b.

UNIT $6 \cdot$ DESCRIBING DATA

Lesson 3: Interpreting Linear Models

Instruction

Key Concepts

- The slope of a line with the equation $y=m x+b$ is m, and the y-intercept of a line with the equation $y=m x+b$ is b.
- The slope of a line is $m=\frac{\text { change in } y}{\text { change in } x}$; the slope between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.
- In context, when written as a decimal, the slope describes how much the dependent variable changes each time the independent variable changes by 1 unit.
- In context, the y-intercept is the initial value of the quantity represented by the y-axis, or the quantity of y when $x=0$.

Common Errors/Misconceptions

- incorrectly calculating the slope
- confusing the y - and x-intercepts, both in context and when calculating using a graph or equation

