Date:_____

Use the following to review for you test. Work the Practice Problems on a separate sheet of paper.

What you need to know & be able to do	Things to remember	Problem	Problem
Central Tendency	• Mean • Median • Mode	1. 36, 39, 58, 42, 106, 39, 48, 45	2. 50, 55, 60, 58, 62, 57, 68, 51, 63
Measures of Spread	 Q1 Q3 IQR Minimum Maximum Range MAD 	3. (Use the same #s from 1)	4. (Use the same #s from 2)
Box-and- Whisker Plot and Outliers	 First dot: Min First Line: Q1 Middle Line: Median Third Line: Q3 Last dot: Max Outlier: Q1 – 1.5(IQR) Q3 + 1.5(IQR) 	 5. Using the data from #1 & 3, construct a box and whisker plot. ++++++++++++++++++++++++++++++++++++	
Correlation vs. Causation	 Positive: Both items are increasing/decre asing Negative: one item increases as the other decreases No Correlation: No relationship Causation: One item causes the other. 	 Practicing Free Throws vs. Free Throw Percentage Weight vs. Amount of Exercise 	 8. Colors of the Sky vs. Time of Day 10. Number of Followers on Twitter vs. Number of Friends on Facebook

GSE Algebra I	Un	it 6 – Describing Data Study Guide
Linear Regression	 y = ax + b r = correlation coefficient (if close to 0 bad fit; if close to 1 or -1 good fit.) 	11. Determine the line of best fit. Is this model a good fit for the data? Price 4.00 5.50 3.50 8.00 5.50 7.00 # of Sandwiches 68 55 85 22 64 28
Quadratic Regression	Data Data 4 (clear) Type in new data 2 nd Data Quadratic Reg Change to YES Write your equation in Standard Form To PREDICT values use f(on the TABLE button	The amount of medication in a patient's bloodstream varies over time. The table below shows the concentration of a certain medication in milligrams per liter at various time intervals after being administered. Time (minutes) 0 30 60 90 120 150 Concentration 0 39.0 49.9 42.3 25.0 7.78 (mg/L) 2 3 4 6 15. What is the quadratic regression model? Write in Standard Form and round to 4 decimal places. 16. Predict the concentration of the medicine at 12 hours (720 minutes).
Exponential Regression	 y = a(b)^x r = correlation coefficient (if close to 0 bad fit; if close to 1 or -1 then good fit.) 	12. Determine the exponential regression model. Is this model a good fit for the data? Year 0 2 4 7 Revenue 3 4 11 25