Convert from Standard Form to Vertex Form:

\[

\]

Substitute the values and rewrite.

Example 1:

$$
\begin{aligned}
& y=8 x^{2}-16 x+27 \\
& a=8 \\
& h=x=\frac{-b}{2 a}=\frac{-(-16)}{2(8)}=\frac{16}{16}=1 \\
& \quad k=y=8(1)^{2}-16(1)+27=8-16+27=19 \\
& y=8(x-1)^{2}+19
\end{aligned}
$$

Example 2:

$$
\begin{aligned}
& y=5 x^{2}-40 x+67 \\
& a=5 \\
& h=x=\frac{-b}{2 a}=\frac{-(-40)}{2(5)}=\frac{40}{10}=4 \\
& k=y=5(4)^{2}-40(4)+67=80-160+67=-13 \\
& y=5(x-4)^{2}-13
\end{aligned}
$$

We know a, b, c and want a, h, k
$\longleftarrow \boldsymbol{a}$ is the coefficient of the x^{2} term
\longleftarrow use the formula to find the value of \boldsymbol{h}
\rightleftarrows substitute the value found for \boldsymbol{h} into the original equation and solve for \boldsymbol{k}

Practice: Convert the following quadratics from standard to vertex form.

1. $y=5 x^{2}-10 x+37$
2. $y=7 x^{2}+28 x+19$
3. $\mathrm{y}=-2 \mathrm{x}^{2}-24 \mathrm{x}-75$

Convert from Vertex Form to Standard Form:

$$
y=a(x-h)^{2}+k \quad \Longrightarrow \quad y=a x^{2}+b x=c
$$

Example 1:

Example 2:
$\left(\begin{array}{rl}y=-3(x-4)^{2}+7 & \\ y=-3(x-4)(x-4)+7 & \Longleftarrow \\ y=-3\left(x^{2}-8 x+16\right)+7 & \Longleftarrow \text { Rewrite }(x-4)^{2} \\ y=-3 x^{2}+24 x-48+7 & \Longleftarrow \text { Simplify }(x-4)(x-4) \\ y=-3 x^{2}+24 x-41 & \Longleftarrow \text { Combinibute the }-3 \\ & \end{array}\right.$

Practice: Convert the following quadratics from vertex to standard form.

1. $y=(x-2)^{2}+6$
2. $y=3(x-3)^{2}-12$
3. $y=-2(x+1)^{2}+3$
