Coordinate Algebra I

Sec **2.8** – Function ntroduction: What's a Function?

-	Introduct	ION: What's a Function? Name:
$\left(\right)$	"Do"main ואייד	Ran"ge t" OUTP-T
	5d 10d 25d	5¢ (0¢ 25¢ YI
	₿ 1 ₿ 5	₿ 1
	PRESSING ONE OF THE	ONE OF THE AVAILABLE
	AVAILABLE BUTTON	COLA PRODUCTS

A coke machine is a good example of a relation that is a **function**. In the machine above assume the price for a soft drink is listed at \$1.30 and the top button shows a picture of a 16 oz Coca Cola bottle.

1. If you were to put 2 dollar bills into the coke machine and press the top button what would you get in return?

1602 COCA COLA, 25 (250 10 0 2. If your repeated the action in step # 1 what would happen? And again? THE SAME Do SAME OUT PUT WOULD THE 1602 COCA COLA, 10¢ (25) 10 4 3. What would happen if you put in 8 quarters and pushed the top button? (Remember that is a different input) 1602 COCA COLA, 0 4. ORDERED PAIRS: Which of the sets of ordered pairs could be considered a function? List the domain and range if it is a function. a. $\{(3,5), (2,6), (-5,3)(-7,1), (2,1)\}$ b. $\{(-2,1), (3,2), (5,2)(-6,5), (-2,1)\}$ c. $\{(7,2), (5,8), (3,1)(2,9), (-5,7)\}$ circle one: circle one: circle one: Not a Function Function Not a Function Function Not a Function Function Domain: -5, 2, 3, 5, 7Domain: -6 , - 2 , 3, 5 Domain:

Range: [, 2, 5

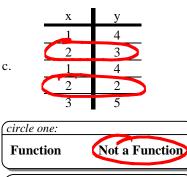
r

b.

5. **<u>TABLES</u>**: Which of the sets of ordered pairs in each table could be considered a function? List the domain and range if it is a function.

a.	Input	- 2	0	2	4	6	
	Output	0.25	1	4	16	64	

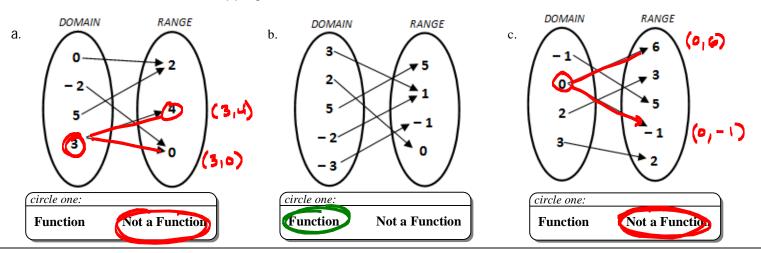
Range:

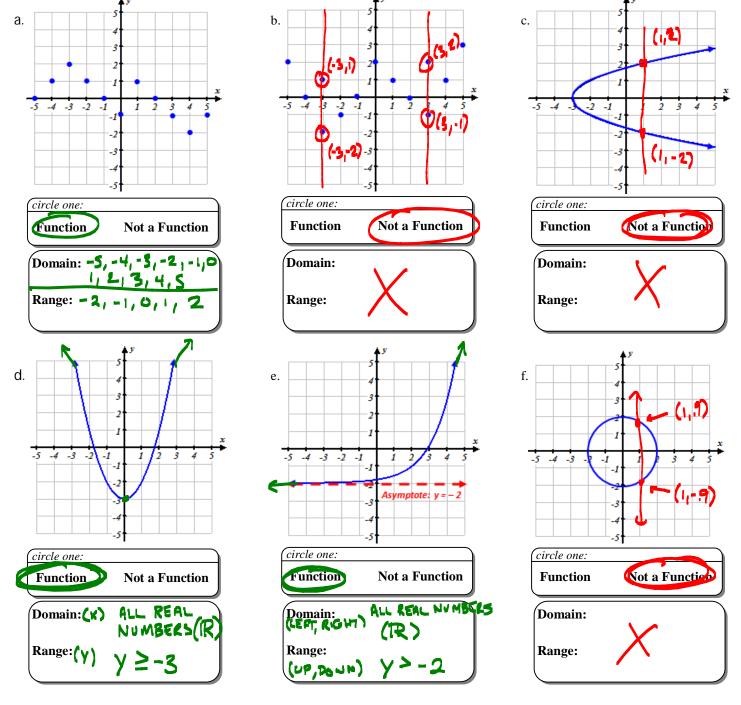

circle one:					
Function	Not a Function				
Domain: -2,0,2,4,6					
Range: 0,25	11,4,16,64				

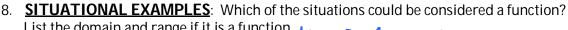
У	4	- 2	4	3	4				
circle one: Function Not a Function									
Functio					n				
$\left(\text{Domain: } \mathbf{O}_{1} 2_{1} 4_{1} 6 \right)$									
Range:	-2,	3,4	+						

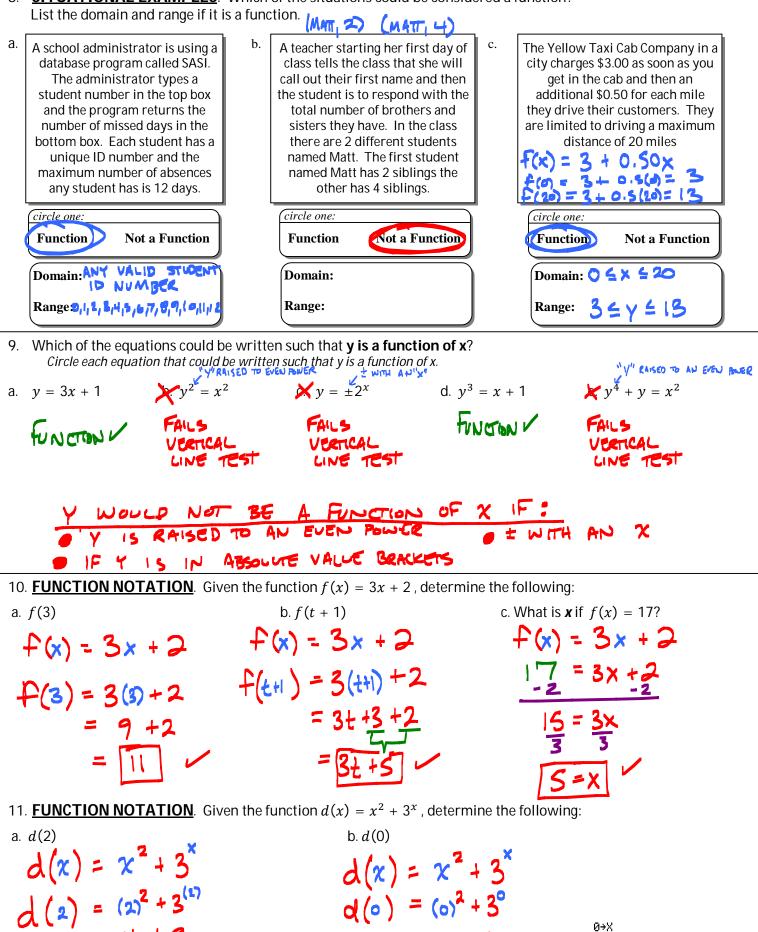
n

2


6

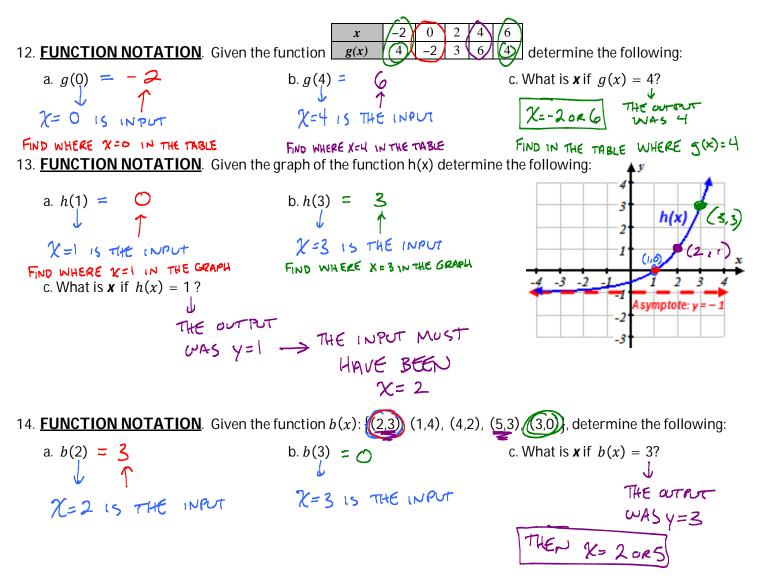

Range: 1, 2, 7, 8,9




6. **MAPPINGS**: Which of the mappings could be considered a function?

7. **<u>GRAPHS</u>**: Which of the graphs could be considered a function? List the domain and range if it is a function.

2÷X


X2+3^X

2

13

X2+3^X

0 1

15. **FUNCTION NOTATION**. Given $f(8) = (8)^2 + 2(8)$, determine a possible equation for f(x)

16. FUNCTION NOTATION. Given the partial set of values for the function
$$h(x)$$
,
determine a possible equation for $h(x)$. $\begin{pmatrix} 0 & 0 \\ x & y \end{pmatrix}$ $\begin{pmatrix} 1 & 3 \\ x & 2 & y \end{pmatrix}$
 $h(x) = 3x$
 $M = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - 0}{1 - 0} = \frac{3}{1} = 3$
 $y = Mx + b$
 $y = 3x + b$
17. FUNCTION NOTATION. Given the partial set of values for the function $\mathbf{a}(x)$,
 $P(x) = \begin{pmatrix} x + 2 \\ y = & x + 2 \end{pmatrix}$ $\begin{pmatrix} (y_1 - 2) \\ x_2 - x_1 \\ y = & x + 2 \end{pmatrix}$
 $M = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - 2}{1 - 0} = \frac{1}{1} = 1$
 $y = Mx + b$
 $y = 3x + b$
17. FUNCTION NOTATION. Given the partial set of values for the function $\mathbf{a}(x)$,
 $P(x) = \begin{pmatrix} x + 2 \\ y = & x + 2 \end{pmatrix}$ $\begin{pmatrix} (y_1 - 2) \\ x_2 - x_1 \\ y = & x + 2 \end{pmatrix}$
 $M = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - 2}{1 - 0} = \frac{1}{1} = 1$
 $y = Mx + b$
 $y = 3x + b$
 $M = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - 2}{1 - 0} = \frac{1}{1} = 1$
 $y = Mx + b$
 $x = 0 + b$
 $y = 1x + 2$
 $P(x) = |x + 2$