UNIT 4 • MODELING AND ANALYZING EXPONENTIAL FUNCTIONS
Lesson 2: Domain and Range of Exponential Functions

Progress Assessment

Circle the letter of the best answer.

1. The domain of $f(x)=-2 \bullet 5^{x}+1$ is all real numbers. What is the range of $f(x)$?
a. $x<1$
b. $x<-2$
c. $x>1$
d. $x>-2$
2. The domain of $f(x)=7 \bullet 2^{x}-6$ is all real numbers. What is the range of $f(x)$?
a. $x<-6$
b. $x<7$
c. $x>-6$
d. $x>7$
3. The domain of $f(x)=4^{x}+5$ is $\{0,1,2,3\}$. What is the range of $f(x)$?
a. $\{0,4,8,12\}$
b. $\{5,9,13,17\}$
c. $\{1,4,16,64\}$
d. $\{6,9,21,69\}$
4. The domain of $f(x)=2^{x}-12$ is $\{1,2,3,4\}$. What is the range of $f(x)$?
a. $\{2,4,6,8\}$
b. $\{-10,-8,-6,-4\}$
c. $\{2,4,8,16\}$
d. $\{-10,-8,-4,4\}$

UNIT 4 • MODELING AND ANALYZING EXPONENTIAL FUNCTIONS
Lesson 2: Domain and Range of Exponential Functions
5. What are the domain and range of the graphed function?

a. Domain: $\{$ all real numbers $\}$; range: $\{f(x)>1\}$
b. Domain: $\{$ all real numbers\}; range: $\{f(x)<1\}$
c. Domain: $\{x<1\}$; range: $\{$ all real numbers $\}$
d. Domain: $\{x>1\}$; range: $\{a l l$ real numbers $\}$

UNIT 4 • MODELING AND ANALYZING EXPONENTIAL FUNCTIONS

Lesson 2: Domain and Range of Exponential Functions
6. What are the domain and range of the graphed function?

a. Domain: $\{-6,-3,0,3\}$; range: $\{1,2,4,8\}$
b. Domain: $\{1,2,4,8\}$; range: $\{-6,-3,0,3\}$
c. Domain: $\{1,2,3,4\}$; range: $\{1,2,4,8\}$
d. Domain: $\{1,2,4,8\}$; range: $\{1,2,3,4\}$
7. Scientists performed a 12 -week study on a population of rabbits. The population began with 10 rabbits. The scientists measured the population once every 4 weeks and found it had doubled each time. The function that models the population growth is $f(x)=10 \bullet 2^{\frac{x}{4}}$. What are the domain and range of the function in this situation?
a. Domain: $\{1,2,3,4\}$; range: $\{10,20,40,80\}$
b. Domain: $\{10,20,40,80\}$; range: $\{1,2,3,4\}$
c. Domain: $\{0,4,8,12\}$; range: $\{10,20,40,80\}$
d. Domain: $\{10,20,40,80\}$; range: $\{0,4,8,12\}$

UNIT 4 • MODELIING AND ANALYZING EXPONENTIAL FUNCTIONS

Lesson 2: Domain and Range of Exponential Functions

Assessment

8. An investment promises a return of 10% per year. Pamela wants to know how much money she will have if she invests $\$ 1,400$ for 5,10 , or 15 years. The investment's growth can be modeled using the exponential function $f(x)=1400 \cdot 1.10^{x}$, where x represents the number of years and $f(x)$ represents the return on the investment. What are the domain and range of the function in this situation? (Note: Range values should be rounded to 2 decimal points, because $f(x)$ represents money.)
a. Domain: $\{5,10,15\}$; range: $\{2254.71,3631.24,5848.15\}$
b. Domain: $\{5,10,15\}$; range: $\{7700,15,400,23,100\}$
c. Domain: $\{2254.71,3631.24,5848.15\}$; range: $\{5,10,15\}$
d. Domain: $\{7700,15,400,23,100\}$; range: $\{5,10,15\}$
9. There are 64 teams in a tennis tournament. After each round, half the teams are eliminated, until only 1 remains. This situation can be represented by the function $f(x)=64\left(\frac{1}{2}\right)^{x}$. What are the domain and range of the function in this situation?
a. Domain: $\{1,2,4,8,16,32,64\}$; range: $\{7,6,5,4,3,2,1\}$
b. Domain: $\{0,1,2,3,4,5,6\}$; range: $\{64,32,16,8,4,2,1\}$
c. Domain: $\{1,2,3,4,5,6,7\}$; range: $\{64,32,16,8,4,2,1\}$
d. Domain: $\{1,2,4,8,16,32,64\}$; range: $\{7,6,5,4,3,2,1\}$
10. The half-life of polonium- 210 is 138 days. A scientist at a high-security nuclear research facility obtained 1,200 grams of polonium-210 for a demonstration. When she actually did the demonstration 12 days after receiving the element, only 1,130 grams remained. The amount of ${ }_{x}$ polonium-210 she had before the demonstration is modeled by the function $f(x)=1200\left(\frac{1}{2}\right)^{\frac{x}{138}}$. What are the domain and range of the function over the 12-day period?
a. Domain: $\{0 \leq x \leq 138\}$; range: $\{f(x)<1200\}$
b. Domain: $\{0 \leq x \leq 12\}$; range: $\{1130 \leq f(x) \leq 1200\}$
c. Domain: $\{0 \leq x \leq 138\}$; range: $\{f(x)>1130\}$
d. Domain: $\{0 \leq x \leq 12\}$; range: $\{0<f(x) \leq 1200\}$

UNIT 4 • MODELING AND ANALYZING EXPONENTIAL FUNCTIONS
Lesson 2: Domain and Range of Exponential Functions

Assessment

Use the given information to solve problem 11.
11. Nathaniel is studying a population of field mice. There were 8 mice when he started the study, but the population triples every month. The mouse population is modeled by the function $f(x)=8 \bullet 3^{x}$, where x represents the number of months Nathaniel has been studying the mice and $f(x)$ represents the field mouse population. The study will end after 6 months.
a. What are the domain and range of the function?
b. Evaluate the function for $x=1,2$, and 4 .
c. Interpret your answer for part b in the context of the problem.
d. Write a statement using function notation that shows the population of field mice at the end of the study. Then use words to describe the symbolic statement.

