UNIT $5 \cdot$ COMPARING AND CONTRASTING FUNCTIONS

Lesson 1: Key Features of Functions

Assessment

Pre-Assessment

Circle the letter of the best answer.

1. For the function $f(x)=\frac{1}{2} x^{2}+\frac{1}{2} x-3$, identify the type of function and the maximum number of x-intercepts the function can have.
a. linear, one x-intercept
c. quadratic, two x-intercepts
b. exponential, one x-intercept
d. none of the above
2. For the following graph, identify the left and right end behaviors.

a. left: approaching ∞; right: approaching $-\infty$
b. left: approaching ∞; right: approaching ∞
c. left: approaching $-\infty$; right: approaching $-\infty$
d. left: approaching $-\infty$; right: approaching ∞

UNIT $5 \cdot$ COMPARING AND CONTRASTING FUNCTIONS
Lesson 1: Key Features of Functions
3. Brookelyn has $\$ 50$ in her savings account, which earns 3% each month. The total balance of Brookelyn's account after x number of months is represented by the function $m(x)=50(1.03)^{x}$. Identify the type of function and the left and right end behaviors on the restricted domain $x \geq 0$.
a. quadratic
left end behavior: equals 50 (not increasing or decreasing)
right end behavior: approaching ∞
b. exponential
left end behavior: equals 50 (not increasing or decreasing)
right end behavior: approaching ∞
c. linear
left end behavior: approaching $-\infty$
right end behavior: approaching ∞
d. exponential
left end behavior: approaching 0
right end behavior: approaching $-\infty$

UNIT $5 \cdot$ COMPARING AND CONTRASTING FUNCTIONS

Lesson 1: Key Features of Functions

4. Which of the following graphs represents a function that is increasing, is negative when $x<-2$, and has a right end behavior that approaches infinity?
a.

c.

b.

d.

UNIT $5 \cdot$ COMPARING AND CONTRASTING FUNCTIONS

Lesson 1: Key Features of Functions

Assessment

5. Which of the following graphs represents a function that is positive for $-1<x<3$, has a relative maximum of 4 , and has an end behavior that approaches negative infinity?
a.

c.

b.

d.

