GSE Algebra 1

Unit One Information

EOCT Domain \& Weight:
Algebra (includes Number and Quantity) 50\%

Curriculum Map: Relationships Between Quantities \& Expressions

Content Descriptors:
Concept 1: Use Properties of rational and irrational numbers
Concept 2: Reason Quantitatively \& Use Units to Solve Problems
Concept 3: Interpret the Structure of Expressions
Concept 4: Perform arithmetic operations of polynomials

Content from Frameworks:
Relationships Between Quantities \& Expressions

Unit Length: Approximately 29 days
Georgia Milestones Study Guide for Unit 1

GSE Algebra 1 - Unit 1 Curriculum Map

Unit Rationale

Students will interpret the structure of expressions and solve problems related to unit analysis. Students will address properties of rational and irrational numbers and operations with polynomials in preparation for working with quadratic functions later in the course. Content addressed in Unit 1 will provide a solid foundation for all subsequent units.

Prerequisites: As identified by the GSE Frameworks	
\checkmark	Order of operations
\checkmark	Algebraic properties
\checkmark	Number sense
\checkmark	Computation with whole numbers and integers
\checkmark	Measuring Iength and finding perimeter and area of rectangles and squares
\checkmark	Volume and capacity

Concept 1	Concept 2	Concept 3	Concept 4
Use properties of rational and irrational numbers	Reason quantitatively and use units to solve problems	Interpret the structure of expressions	Perform arithmetic operations on polynomials.
GSE Standards	GSE Standards	GSE Standards	GSE Standards
MGSE9-12.N.RN. 2 Rewrite expressions involving radicals and rational exponents using the properties of exponents. (i.e., simplify and/or use the operations of addition, subtraction, and multiplication, with radicals within expressions limited to square roots). MGSE9-12.N.RN. 3 Explain why the sum or product of rational numbers is rational; why the sum of a rational number and irrational number is irrational; and why the product of a nonzero rational number and an irrational number is irrational.	MGSE9-12.N.Q. 1 Use units of measure (linear, area, capacity, rates and time) as a way to understand problems: a. Identify, use and record appropriate units of measure within context, within data displays, and on graphs; b. Convert units and rates using dimensional analysis (English-toEnglish and Metric-to Metric without conversion factor provided and between English and Metric with conversion factor) c. Use units within multi-step problems and formulas; interpret units of input and resulting units of output. MGSE9-12.N.Q. 2 Define appropriate quantities for the purpose of descriptive modeling. Given a situation, context or problem, students will determine, identify and	MGSE9-12.A.SSE. 1 Interpret expressions that represent a quantity in terms of context. MGSE9-12.A.SSE.1a Interpret parts of an expression, such as terms, factors, and coefficients, in context. MGSE9-12.A.SSE.1b Given situations which utilize formulas or expressions with multiple terms and/or factors, interpret the meaning (in context) of individual terms or factors.	MGSE9-12.A.APR. 1 Add, subtract, and multiply polynomials. Understand that polynomials form a system analogous to the integers in that they are closed under operations.

GSE Algebra 1 - Unit 1

	use appropriate quantities for representing the situation. MGSE9-12.N.Q. 3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. For example, money situations are generally reported to the nearest cent (hundredth). Also, an answers' precision is limited to the precision of the data given.		
Lesson Essential Question	Lesson Essential Question	Lesson Essential Question	Lesson Essential Question
- Why is the sum or product of rational numbers rational? - Why is the sum of a rational number and irrational number irrational? - Why is the product of a nonzero rational number and an irrational number irrational?	- How do I choose and interpret units of measure in context?	- How do I interpret parts of an expression in terms of context? - How can polynomials be used to express realistic situations?	- How are polynomial operations related to operations in the real number system?
Vocabulary	Vocabulary	Vocabulary	Vocabulary
- Algebra - Coefficient - Constant Term - Expression - Factor - Integer - Irrational Number - Radical - Radicand - Rational Number - Term - Variable - Whole number	- Capacity - Circumference - Perimeter - Pythagorean Theorem - Volume	- Binomial Expression - Monomial Expression - Polynomial function - Standard form of a polynomial - Trinomial	- Associative property of addition $(a+b)+c=a+(b+c)$ - Commutative property of addition $\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}$ - Additive identity property of 0 a $+0=0+\mathrm{a}=\mathrm{a}$ - Existence of additive inverses For every a there exists -a so that $a+(-a)=(-a)+a=0$. - Associative property of multiplication $(\mathrm{a} \times \mathrm{b}) \times \mathrm{c}=\mathrm{a} \times$ (b $\times \mathrm{c}$) - Commutative property of multiplication $\mathrm{a} \times \mathrm{b}=\mathrm{b} \times \mathrm{a}$ - Distributive property of

GSE Algebra 1 - Unit 1

			multiplication over addition $a \times(b+c)=a \times b+a \times c$
Sample Assessment Items	Sample Assessment Items	Sample Assessment Items	Sample Assessment Items
MGSE9-12.N.RN. 2 Which expression is equivalent to $-\sqrt{27}-3 \sqrt{45}-\sqrt{20}+2 \sqrt{45}$ a. $3 \sqrt{3}-5 \sqrt{5}$ b. $-3 \sqrt{3}-5 \sqrt{5}$ c. $-\sqrt{7}-\sqrt{45}$ d. $-\sqrt{27}-\sqrt{20}-\sqrt{45}$ MGSE9-12.N.RN. 3 Which statement is true about the value of $(\sqrt{27}-3) \cdot 9$? a. It is rational, because the product of two rational numbers is rational. b. It is rational, because the product of a rational number and an irrational number is rational. c. It is irrational, because the product of two irrational numbers is irrational. d. It is irrational, because the product of an irrational number and a rational number is irrational.	MGSE9-12.N.Q. 1 A pipe is leaking at the rate of 8 fluid ounces per minute. How many gallons is the pipe leaking per hour? a. $.02 \mathrm{gal} / \mathrm{h}$ b. $3.75 \mathrm{gal} / \mathrm{h}$ c. $17.07 \mathrm{gal} / \mathrm{h}$ d. $3,840 \mathrm{gal} / \mathrm{h}$ MGSE9-12.N.Q. 2 You want to model the speed of a motorcycle. Which units would be appropriate for measuring this quantity? a. Kilometers per mile b. Kilometers per hour c. Minutes per hour d. Hours per meter MGSE9-12.N.Q. 3 A carpenter is designing a bookcase that has shelves that should be 115 cm with a tolerance of $0.6 \mathrm{~cm}(115 \mathrm{~cm} \pm$ 0.6 cm). A set of six shelves had lengths of $115.2 \mathrm{~cm}, 114.9 \mathrm{~cm}$, $115.0 \mathrm{~cm}, 114.3 \mathrm{~cm}, 114.7 \mathrm{~cm}$ and 115.7 cm . Which of the shelves are not within the specified tolerance? a. Only the 114.3 cm shelf. b. Only the 115.7 cm shelf. c. Both the 114.3 and 115.7 cm shelves. d. All of the shelves are within the tolerance.	MGSE9-12.A.SSE.1a Lee deposits \$1,200 into an account that pays 5% annual interest. What is his ending balance after 4 years? Use the formula where $A=$ ending balance, P is the amount deposited (\$1,200), r is the percent interest (.05), and t is the number of years (4). a. \$ 987.24 b. $\$ 1,300.56$ c. $\$ 1,458.61$ d. $\$ 6,075.00$ MGSE9-12.A.SSE.1b Old Navy is having a sale in which all T-shirts are $\$ 10$. The sales tax is 5%. If Bryce buys n T-shirts during this sale, the total cost of his purchase will be $10 n+0.05(10 n)$. What does $0.05(10 n)$ in this context represent? a. The expression $0.05(10 \mathrm{n})$ represents the price of each Tshirt. b. The expression $0.05(10 \mathrm{n})$ represents the total tax on Bryce's purchase. c. The expression $0.05(10 \mathrm{n})$ represents the cost of Bryce’s purchase before tax. d. The expression $0.05(10 \mathrm{n})$ represents the total cost of Bryce's purchase.	MGSE9-12.A.APR. 1 A train travels at a rate of $(4 x+5)$ miles per hour. How many miles can it travel at that rate in $(x-1)$ hours? a. $3 x-4$ miles b. $5 x-4$ miles c. $4 x^{2}+x-5$ miles d. $4 x^{2}-9 x-5$ miles

GSE Algebra 1 - Unit 1

At the end of Unit 1 student's should be able to say "I can..."

\checkmark Interpret units of measure in context.
\checkmark Interpret parts of an expression in terms of context.
\checkmark Relate polynomial operations to the real number system.
\checkmark Use polynomials to express realistic situations.
\checkmark Simplify radicals and justify simplification of radicals using visual representations.
\checkmark Use the operations of addition, subtraction, and multiplication, with radicals within expressions limited to square roots.
\checkmark Understand why the sum or product of rational numbers is rational.
\checkmark Understand why the sum of a rational number and irrational number is irrational.
\checkmark Understand why the product of a nonzero rational number and an irrational number is irrational.
\checkmark Understand that results of operations performed between numbers from a particular number set does not always belong to the same set. For example, the sum of two irrational numbers $(2+\sqrt{ } 3)$ and $(2-\sqrt{ } 3)$ is 4 , which is a rational number; however, the sum of a rational number 2 and irrational number $\sqrt{ } 3$ is an irrational number $(2+\sqrt{ } 3)$.

