GSE Algebra 1

Unit Two Information

EOCT Domain & Weight: Equations - 30%

Curriculum Map: Reasoning with Linear Equations & Inequalities

Content Descriptors:

Concept 1: Create equations that describe numbers or relationships.

Concept 2: Understand solving equations as a process of reasoning & explain the reasoning. Solve equations and inequalities in one variable

Concept 3: Solve systems of equations

Concept 4: Represent & solve equations & inequalities graphically.

Concept 5: Build a function that models a relationship between two quantities.

Concept 6: Understand the concept of a function and use function notation.

Concept 7: Interpret functions that arise in applications in terms of context.

Concept 8: Analyze functions using different representations.

Content from Frameworks:

Reasoning with Linear Equations & Inequalities

Unit Length: Approximately 36 days

Georgia Milestones Study Guide for Unit 2

GSE Algebra 1 – Unit 2 Curriculum Map

Unit Rational:

Building on standards from middle school, students will analyze linear functions only. Students will:

- Investigate key features of graphs
- Create, solve, and model graphically linear equations and inequalities in one and two variables
- Create, solve and model graphically systems of linear equations in two variables
- Create and interpret systems of inequalities where applicable; for example, students will create a system a system to define the domain of a particular situations, such as situation limited to the first quadrant; the focus is not on solving systems of inequalities
- * Rearrange formulas to highlight a quantity of interest
- Recognize arithmetic sequences as linear functions

Some of the Unit 2 standards will be repeated in Units 3, 4, and 5 as they also apply to quadratic and exponential functions.

Prerequisites: As identified by the GSE Frameworks			Length of Unit
\checkmark Using the Pythagorean Theorem			
\checkmark Understanding slope as a rate of change of one quantity in relation to another quantity			36 Days
✓ Interpreting a graph			50 Days
✓ Creating a table of values	\checkmark Creating a table of values		
✓ Working with functions			
\checkmark Writing a linear equation			
✓ Using inverse operations to isolate	e variables and solve equations		
✓ Maintaining order of operations	1		
✓ Understanding notation for inequa	alities		
✓ Being able to read and write inequ	uality symbols		
✓ Graphing equations and inequality	ies on the coordinate plane		
✓ Understanding and use properties	of exponents		
 ✓ Graphing points 			
✓ Choosing appropriate scales and a			
Concept 1	Concept 2	Concept 3	Concept 4
	Understand solving equations as a		
Create equations that describe	process of reasoning and explain the	Solve systems of equations	Represent and solve equations and
numbers or relationships.	reasoning. Solve equations and		inequalities graphically.
1	inequalities in one variable.		
GSE Standards	GSE Standards	GSE Standards	GSE Standards
MGSE9-12.A.CED.1	MGSE9-12.A.REI.1	MGSE9-12.A.REI.5	MGSE9-12.A.REI.10
Create equations and inequalities in	Using algebraic properties and the	Show and explain why the	Understand that the graph of an
one variable and use them to solve	properties of real numbers, justify the	elimination method works to solve a	equation in two variables is the set
problems. Include equations arising	steps of a simple, one-solution	system of two-variable equations.	of all its solutions plotted in the
from linear, quadratic, simple rational equation. Students should justify			coordinate plane.

GSE Algebra 1 – Unit 2 Curriculum Map

and exponential functions (integer inputs only).	their own steps, or if given two or more steps of an equation, explain	MGSE9-12.A.REI.6 Solve systems of linear equations	MGSE9-12.A.REI.11
inpats only).	the progression from one step to the	exactly and approximately (e.g.	Using graphs, tables, or successive
MGSE9-12.A.CED.2	next using properties.	with graphs), focusing on pairs of	approximations, show that the solution
Create linear. quadratic, and	nene seme properties.	linear equations in two variables.	to the equation $f(x) = g(x)$ is the x-
exponential equations in two or more	MGSE9-12.A.REL3		value where the v-values of $f(x)$ and
variables to represent relationships	Solve linear equations and		g(x) are the same.
between quantities: graph equations	inequalities in one variable, including		
on coordinate axes with labels and	equations with coefficients		MGSE9-12.A.REI.12
scales. (The phrase "in two or more	represented by letters. (For example.		Graph the solution set to a linear
variables" refers to formulas like the	given $ax + 3 = 7$, solve for x)		inequality in two variables.
compound interest formula, in which has multiple			
variables.)			
MGSE9-12.A.CED.3			
Represent constraints by equations or			
inequalities, and by systems of			
equations and/or inequalities, and			
interpret data points as possible (i.e. a			
solution) or not possible (i.e. a non-			
solution) under the established			
constraints.			
MGSE9-12.A.CED.4			
Rearrange formulas to highlight a			
quantity of interest using the same			
reasoning as in solving equations.			
Examples: Rearrange Ohm's law V =			
IR to highlight resistance R;			
Rearrange area of a circle formula			
A = π r2 to highlight the radius r.			

Lesson Essential Questions	Lesson Essential Questions	Lesson Essential Questions	Lesson Essential Questions
How do I create linear equations from graphs? How do I represent constraints by equations or inequalities? How do I justify the solution to an equation?	How do I solve an equation in one variable? How do I solve an inequality in one variable?	How do I prove that a system of two equations in two variables can be solved by multiplying and adding to produce a system with the same solutions? How do I solve a system of linear equations graphically?	How do I graph a linear inequality in two variables? How do I graph a system of linear inequalities in two variables?
Vocabulary	Vocabulary	Vocabulary	
 Algebra Coefficient Constant Constraints Coordinate Axes Equation Equivalent Expression Expression Factor Function Inequality Linear Quantity Simplify Solutions Term Variable 	 Distributive Property Substitution Infinitely many Inequality Less than Less than or equal to No solution One solution 	 Greater than Greater than or equal to Coordinate Plane Elimination Method Linear inequality Ordered Pair System of equations System of linear inequalities 	 Accuracy Coordinate Plane Equation variables Solutions Linear function Coordinates Intersect
Sample Assessment Items	Sample Assessment Items	Sample Assessment Items	Sample Assessment Items
Given that the following trapezoid has an area of 54 cm^2 , what is the length of the unknown base? Area of = $\frac{1}{2}$ (base ₁ + base ₂) height a Trapezoid a. 1cm b. 5cm c. 8cm d. 16cm	 MGSE9-12.A.REI.1 Which of the following operations will solve Ohm's law, V = IR, for I? A. Subtract R from both sides. B. Divide both sides by R. C. Subtract V from both sides. D. Divide both sides by I. 	MGSE9-12.A.REI.5 What is the solution for the system of equations represented by: $4x - 2y = 12$ and $x = \frac{1}{2}y + 3$ A. (4,2) B. (1, $\frac{1}{2}$) C. Infinitely many D. No solution	MGSE9-12.A.RE1.10 Which of the following is NOT a solution of the equation represented by the graph?

MGSE9-12.A.REI.11

Estimate the solution of the equation a(x) = b(x)?

Concept 5	Concept 6	Concept 7	Concept 8
Build a function that models a	Understand the concept of a function	. Interpret functions that arise in	Analyze functions using different
relationship between two quantities	and use function notation	applications in terms of the context.	representations.
GSE Standards	GSE Standards	GSE Standards	GSE Standards
MGSE9-12.F.BF.1	MGSE9-12.F.IF.1	MGSE9-12.F.IF.4	MGSE9-12.F.IF.7
Write a function that describes	Understand that a function from one	Using tables, graphs, and verbal	Graph functions expressed
<i>a</i> relationship between two quantities.	set (the input, called the domain) to	descriptions, interpret the key	algebraically and show key features
	another set (the output, called the	characteristics of a function which	of the graph both by hand and by
MGSE9-12.F.BF.1a	range) assigns to each element of the	models the relationship between two	using technology.
Determine an explicit expression and	domain exactly one element of the	quantities. Sketch a graph showing	
the recursive process (steps for	range, i.e. each input value maps to	key features including: intercepts;	MGSE9-12.F.IF.7a
calculation) from context.	exactly one output value. If f is a	interval where the function is	Graph linear and quadratic functions
	function, x is the input (an element of	increasing, decreasing, positive, or	and show intercepts, maxima, and
MGSE9-12.F.BF.2	the domain), and $f(x)$ is the output	negative; relative maximums and	minima (as determined by the
Write arithmetic and geometric	(an element of the range).	minimums; symmetries; end	function or by context).
sequences recursively and explicitly,	Graphically, the graph is $y = f(x)$.	behavior; and periodicity.	
use them to model situations, and	MGSF9-12 F IF 2		MGSE9-12.F.IF.9
translate between the two forms.	Use function notation evaluate	MGSE9-12.F.IF.5	Compare properties of two
Connect arithmetic sequences to linear	functions for inputs in their domains	Relate the domain of a function to its	functions each represented in a
functions and geometric sequences to	and interpret statements that use	graph and, where applicable, to the quantitative relationship it describes	different way (algebraically, graphically, numerically in tables, or
	function notation in terms of a	For example, if the function h(n)	by verbal descriptions). For
	context.	gives the number of person-hours it	example, given a graph of one
	MGSE9-12.F.IF.3	takes to assemble n engines in a	function and an algebraic expression
	Recognize that sequences are	factory, then the positive integers	for another, say which has the larger
	functions, sometimes defined	would be an appropriate domain for	maximum.
	recursively, whose domain is a	the function.	
	subset of the integers. (Generally, the		
	scope of high school math defines	MGSE9-12.F.IF.6	
	this subset as the set of natural	Calculate and interpret the average	
	numbers 1,2,3,4) By graphing or	rate of change of a function	
	calculating terms, students should be	(presented symbolically or as a	
	able to show how the recursive	table) over a specified interval.	
	sequence a1=7, an=an-1+2; the	Estimate the rate of change from a	
	sequence $sn = 2(n-1) + 7$; and the	graph.	
	function $f(x) = 2x + 5$ (when x is a		
	natural number) all define the same		
	sequence.		

Lesson Essential Question	Lesson Essential Question	Lesson Essential Question	Lesson Essential Question
Why is the concept of a function	How do I use function notation to	How do I use different	How do I interpret key features of
important and how do I use function	show a variety of situations modeled	representations to analyze linear	graphs in context?
notation to show a variety of situations	by functions?	functions?	
modeled by functions?			
	How do I determine if the equation		
Why are sequences functions?	represents a function?		
	-		
How do I write recursive ad explicit	How do I model and interpret		
formulas for arithmetic sequences?	expressions for functions in terms of		
-	the situation they model?		
	What is a sequence and how can a		
	sequence model be written as a		
	function?		
Vocabulary	Vocabulary	Vocabulary	Vocabulary
Linear Model	Output	• Estimate	• Evaluate
• Sequence	• Input	• Average Rate of Change	• x-Interpret
Recursive	1	Constant Rate of Change	• y-intercept
• Explicit			Analyze
Arithmetic sequence			• Translate
Sample Assessment Items	Sample Assessment Items	Sample Assessment Items	Sample Assessment Items
MGSE9-12.F.BF.1	MGSE9-12.F.IF.1	MGSE9-12.F.IF.4	MGSE9-12.F.IF.7
Katherine has \$140 in the bank and is	Which function is modeled in the	The graph can be described as:	Sally decides to make and sell
saving \$6 per week. Abbie has \$462 in	table?		necklaces to earn money to buy a new
the bank, but is spending at a rate of	$x \rightarrow 2$ $z = x$ $f(x)$	100y	computer. She plans to charge \$5.25
\$10 per week. Which equation will	a. $f(x) = 2x - 5$		per necklace.
came amount of money in the bank?	$ h_{t}(r) - r + 2 = 1 = 3$	80	a Write a function that describes
same amount of money in the bank?	(x) = x + 2 2.8	60	the revenue $R(n)$ in dollars Sally will
a. $140 + 6x = 462 + 10x$	c. $f(x) = x + 5$	40	earn from selling <i>n</i> necklaces.
b. $140 + 6x = 462 - 10x$	3 13	20	R(n) = 5.25n
c. 140 - $6x = 462 + 10x$	d. $f(x) = 5x - 2$		
d. $140 + 10x = 462 - 6x$	- 10	x	b. What is a reasonable domain for
		-20_5 5 10	this function?

MGSE9-12.F.BF.1a	MGSE9-12.F.IF.2	a. a positive function that is	Since Sally is selling 1 necklace at a
A small swimming pool initially	If $f(5) = 2(5) - 7$, which function	increasing	time and cannot sell negative
contains	gives $f(x)$?	b. a positive function that	n <mark>ecklaces, a reasonable domain for</mark>
400 gallons of water, and water is		is decreasing	this function is the whole numbers.
being	a. $f(x) = 2x$	c. a negative function that	
added at a rate of 10 gallons per		is increasing	c. Graph the function.
minute.	b. $f(x) = 5x$	d. a negative function that	y 🛧
Which expression represents the		is decreasing	
volume	c. $f(x) = 2x - 7$		25
of the pool after t minutes?	d f(x) = 5x 7	MGSE9-12.F.IF.5	23
a. $-10t + 400$	u. $f(x) = 5x^{-7}$	Turner Field, home of the Atlanta	
b. $10t + 400$		Braves, is capable of seating 56,790	
c. $400t + 10$		fans. For each game, the amount of	-10 -5 5 10 x
d.	MIGSE9-12.F.IF.3	money that the Braves'	
	The first term in the sequence is -2.	organization brings in as revenue is	-25
		a function of	
MGSE9-12.F.BF.2	n 1 2 5 4 5	the number of people <i>n</i> in	$\overset{ \ }{\downarrow}$
The contents of the fuel tank of a car	$\begin{vmatrix} -& -& -& -& -& -& -& -& -& -& -& -& -& $	attendance. If each ticket costs \$16.	
can be modeled by the function		what is the domain of this function?	d. Identify and interpret the
g(x) = -0.04x + 15,		a. $0 \le n \le 56,790$	intercepts of the function.
where x is in miles driven and $g(x)$	which function represents the	b. $16 \le n \le 56,790$	The n- and R-intercepts are both 0.
represents the amount of fuel	sequence?	c. 0 <u>< n</u> <u>< 908,640</u>	The intercept indicates that Sally will
remaining in the tank in gallons.	a. $a_n = a_{n-1} + 1$	d. $16 < n < 908,640$	earn no revenue if she sells no
Sierra has traveled 200 miles. Which	b. $a_n = a_{n-1} - 2$		necklaces.
statement represents the amount of gas	c. $a_n = a_{n-1} + 5$		
in gallons that she has left in her car?	a. $a_n = a_{n-1} + I$	MGSE9-12.F.IF.6	MGSE9-12 F IF 7a
C		The rate of change is constant.	What are the intercepts of the linear
a. $g(x) = 7$		Determine the rate of change and	function shown?
b. $g(x) = 8$		what the rate of change means for	<u>↑у /</u>
c. $g(200) = 7$		the situation.	6+/
d. $g(200) = 8$			4
		Distance	
		Time (hours) (miles)	
		4 212	$\overbrace{-6}^{-4}, \overbrace{-2}^{-2}, \overbrace{-2}^{-4}, \overbrace{-6}^{-6}, x$
		6 318	2
		8 424	4
		10 530	
		10 350	

		a. 1/53; your car travels 53 miles every hour b. 10; your car travels for 10hours c. 53; your car travels 53 miles	 a. <i>x</i>-intercept: 2; <i>y</i>-intercept: 2 b. <i>x</i>-intercept: 2; <i>y</i>-intercept: 4 c. <i>x</i>-intercept: 2; <i>y</i>-intercept: 4
		every hour d. 212; your car travels 212 miles	d. <i>x</i> -intercept: 2; <i>y</i> -intercept: 4
			MGSE9-12.F.IF.9The table shows values for the function $f(x)$, while the graph shows function $g(x)$. Which function has the greater slope?
			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
			a. $f(x)$ b. $g(x)$
			c. They are the same.
Resources Concept 5	Rasourcas Concept 6	Resources Concept 7	a. Not enough information.
 Actional Strategies & 	Instructional Strategies &	Instructional Strategies &	Rate of Change practice (F.IF.6)
Common Misconceptions	Common Misconceptions	<u>Common Misconceptions</u>	
✤ Lake Algae activator/discussion	◆ Is it a function? (F.IF.1)		 Guided notes on Average Rate of
(F.BF.1)	Find someone who (F.IF.2)	 Graphic Organizer ideas 	Change (F.IF.6)
Susita's Account	Sequences Power Point Notes	*	
· · · · · · · · · · · · · · · · · · ·	· •		

At the end of Unit 2 student's should be able to say "I can..."

- Justify the solution of a linear equation and inequality in one variable.
- Justify the solution to a system of 2 equations in two variables.
- Solve a system of linear equations in 2 variables by graphing.
- o Graph a linear inequality in 2 variables.
- Explain what it means when two graphs $\{y = f(x) \text{ and } y = g(x)\}$ intersect.
- Define and use function notation, evaluate functions at any point in the domain, give general statements about how f(x) behaves at different regions in the domain (as x gets very large or very negative, close to 0 etc.), and interpret statements that use function notation.
- Explain the difference and relationship between domain and range and find the domain and range of a function from a function equation, table or graph.
- o Explain why sequences are functions.
- Interpret *x* and *y* intercepts, where the function is increasing or decreasing, where it is positive or negative, its end behaviors, given the graph, table or algebraic representation of a linear function in terms of the context of the function.
- Find and/or interpret appropriate domains and ranges for authentic linear functions.
- Calculate and interpret the average rate of change over a given interval of a function from a function equation, graph or table, and explain what that means in terms of the context of the function.
- Estimate the rate of change of a function from its graph at any point in its domain.
- Explain the relationship between the domain of a function and its graph in general and/or to the context of the function.
- Accurately graph a linear function by hand by identifying key features of the function such as the *x* and *y* intercepts and slope.
- Write recursive and explicit formulas for arithmetic sequences.