GSE Algebra 1

Unit Two Information

EOCT Domain \& Weight: Equations - 30\%

Curriculum Map: Reasoning with Linear Equations \& Inequalities

Content Descriptors:
Concept 1: Create equations that describe numbers or relationships.
Concept 2: Understand solving equations as a process of reasoning \& explain the reasoning. Solve equations and inequalities in one variable
Concept 3: Solve systems of equations
Concept 4: Represent \& solve equations \& inequalities graphically. Concept 5: Build a function that models a relationship between two quantities.
Concept 6: Understand the concept of a function and use function notation.
Concept 7: Interpret functions that arise in applications in terms of context.
Concept 8: Analyze functions using different representations.

Content from Frameworks:
Reasoning with Linear Equations \& Inequalities

Unit Length: Approximately 36 days
Georgia Milestones Study Guide for Unit 2

GSE Algebra 1 - Unit 2
 Curriculum Map

Unit Rational:

Building on standards from middle school, students will analyze linear functions only. Students will:

* Investigate key features of graphs
* Create, solve, and model graphically linear equations and inequalities in one and two variables
* Create, solve and model graphically systems of linear equations in two variables
* Create and interpret systems of inequalities where applicable; for example, students will create a system a system to define the domain of a particular situations, such as situation limited to the first quadrant; the focus is not on solving systems of inequalities
* Rearrange formulas to highlight a quantity of interest
* Recognize arithmetic sequences as linear functions

Some of the Unit 2 standards will be repeated in Units 3, 4, and 5 as they also apply to quadratic and exponential functions.

Prerequisites: As identified by the GSE \checkmark Using the Pythagorean Theorem \checkmark Understanding slope as a rate of \checkmark Interpreting a graph \checkmark Creating a table of values \checkmark Working with functions \checkmark Writing a linear equation \checkmark Using inverse operations to isolat \checkmark Maintaining order of operations \checkmark Understanding notation for inequ \checkmark Being able to read and write inequal \checkmark Graphing equations and inequalities \checkmark Understanding and use propertie \checkmark Graphing points \checkmark Choosing appropriate scales and	E Frameworks change of one quantity in relation to anoth te variables and solve equations alities uality symbols ties on the coordinate plane s of exponents label a graph	her quantity	Length of Unit 36 Days
Concept 1	Concept 2	Concept 3	Concept 4
Create equations that describe numbers or relationships.	Understand solving equations as a process of reasoning and explain the reasoning. Solve equations and inequalities in one variable.	Solve systems of equations	Represent and solve equations and inequalities graphically.
GSE Standards	GSE Standards	GSE Standards	GSE Standards
MGSE9-12.A.CED. 1	MGSE9-12.A.REI. 1	MGSE9-12.A.REI. 5	MGSE9-12.A.REI. 10
Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear, quadratic, simple rational	Using algebraic properties and the properties of real numbers, justify the steps of a simple, one-solution equation. Students should justify	Show and explain why the elimination method works to solve a system of two-variable equations.	Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane.

GSE Algebra 1 - Unit 2 Curriculum Map

and exponential functions (integer imputs only).

MGSE9-12.A.CED. 2
Create linear, quadratic, and exponential equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (The phrase "in two or more variables" refers to formulas like the compound interest formula, in which
has multiple
variables.)
MGSE9-12.A.CED. 3
Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret data points as possible (i.e. a solution) or not possible (i.e. a nonsolution) under the established constraints.

MGSE9-12.A.CED. 4

Rearrange formulas to highlight a quantity of interest using the same reasoning as in solving equations. Examples: Rearrange Ohm's law $\mathrm{V}=$ IR to highlight resistance R;
Rearrange area of a circle formula
$A=\pi r 2$ to highlight the radius r.
their own steps, or if given two or MGSE9-12.A.REI. 6 more steps of an equation, explain the progression from one step to the next using properties.

MGSE9-12.A.REI. 3

Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.(For example, given $a x+3=7$, solve for x)

Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.

MGSE9-12.A.REI. 11

Using graphs, tables, or successive approximations, show that the solution to the equation $f(x)=g(x)$ is the x value where the y-values of $f(x)$ and $g(x)$ are the same.

MGSE9-12.A.REI. 12

Graph the solution set to a linear inequality in two variables.

GSE Algebra 1 - Unit 2

Lesson Essential Questions	Lesson Essential Questions	Lesson Essential Questions	Lesson Essential Questions
How do I create linear equations from graphs? How do I represent constraints by equations or inequalities? How do I justify the solution to an equation?	How do I solve an equation in one variable? How do I solve an inequality in one variable?	How do I prove that a system of two equations in two variables can be solved by multiplying and adding to produce a system with the same solutions? How do I solve a system of linear equations graphically?	How do I graph a linear inequality in two variables? How do I graph a system of linear inequalities in two variables?
Vocabulary	Vocabulary	Vocabulary	
- Algebra - Coefficient - Constant - Constraints - Coordinate Axes - Equation - Equivalent Expression - Expression - Factor - Function - Inequality - Linear - Quantity - Simplify - Solutions - Term - Variable	- Distributive Property - Substitution - Infinitely many - Inequality - Less than - Less than or equal to - No solution - One solution	- Greater than - Greater than or equal to - Coordinate Plane - Elimination Method Linear inequality - Ordered Pair - System of equations - System of linear inequalities	- Accuracy - Coordinate Plane - Equation - variables - Solutions - Linear function - Coordinates - Intersect
Sample Assessment Items	Sample Assessment Items	Sample Assessment Items	Sample Assessment Items
M G S E 9 - 12 - A C E D	MGSE9-12.A.REI. 1	MGSE9-12.A.REI. 5	MGSE9-12.A.REI. 10
Given that the following trapezoid has an area of $54 \mathrm{~cm}^{2}$, what is the length of the unknown base?	Which of the following operations will solve Ohm's law, V = IR, for I? A. Subtract R from both sides. B. Divide both sides by R. C. Subtract V from both sides. D. Divide both sides by I.	What is the solution for the system of equations represented by: $4 x-2 y=12 \text { and } \quad x=1 / 2 y+3$ A. $(4,2)$ B. $(1,1 / 2)$ C. Infinitely many D. No solution	Which of the following is NOT a solution of the equation represented by the graph?

GSE Algebra 1 - Unit 2

MGSE9-12.A.CED. 2
Rita reads a book at a steady pace. Rita graphs her progress through the book by putting the time in hours t on the horizontal axis and chapters remaining C on the vertical axis. Which equation describes Rita's graph?

Which equation shows $6(x+4)=2(y$
$+5)$ solved for y ?
A. $y=x+3$
B. $y=x+5$
C. $y=3 x+7$
a. $C=-3 t+24{ }_{27} \uparrow^{c} \quad$ D. $\mathrm{y}=3 \mathrm{x}+17$
b. $C=3 t-24{ }_{21}^{24}$
c. $C=-24 t+3$
d. $C=24 t+3$

Let a, b, and c be constants, and let x be a variable. Which of the following \mathbf{C}. \{ issequivalent to $\mathrm{a}(\mathrm{x}+\mathrm{b})<\mathrm{c}$ when $\mathrm{a}<$

MGSE9-12.A.REI. 6
Which of the following systems of equations has a solution in which the x-value is greater than the y-value?

$$
\left\{\begin{array}{c}
5 x-2 y=12 \\
-10 x+4 y=-20
\end{array}\right.
$$

A.
B. $\left\{\begin{aligned} 3 x+2 y & =-19 \\ -2 x-3 y & =21\end{aligned}\right.$
$x<\frac{c-b}{a}$
$x>\frac{c}{a}-b$
C.
a
$x>\frac{c-b}{a}$
$x<\frac{c}{a}-b$

a. $(0,2)$
b. $(1,0)$
c. $(3,-4)$
d. $(4,-1)$

MGSE9-12.A.REI. 11

Estimate the solution of the equation $\mathrm{a}(\mathrm{x})=\mathrm{b}(\mathrm{x})$?

GSE Algebra 1 - Unit 2

GSE Algebra 1 - Unit 2

GSE Algebra 1 - Unit 2

MGSE9-12.F.BF.1a

A small swimming pool initially contains
400 gallons of water, and water is being
added at a rate of 10 gallons per minute.
Which expression represents the volume
of the pool after t minutes?
a. $-10 t+400$
b. $10 \mathrm{t}+400$
c. $400 t+10$
d.

MGSE9-12.F.BF. 2

The contents of the fuel tank of a car can be modeled by the function $g(x)=-0.04 x+15$,
where x is in miles driven and $g(x)$ represents the amount of fuel remaining in the tank in gallons. Sierra has traveled 200 miles. Which statement represents the amount of gas in gallons that she has left in her car?
a. $g(x)=7$
b. $g(x)=8$
c. $g(200)=7$
d. $g(200)=8$

MGSE9-12.F.IF. 2
If $f(5)=2(5)-7$, which function gives $f(x)$?
a. $f(x)=2 x$
b. $f(x)=5 x$
c. $f(x)=2 x-7$
d. $f(x)=5 x-7$

MGSE9-12.F.IF. 3
The first term in the sequence is -2 .

n	1	2	3	4	5	\ldots
	-	5	1	1	2	\cdots
	2		2	9	6	

Which function represents the sequence?
a. $a_{n}=a_{n-1}+1$
b. $a_{n}=a_{n-1}-2$
c. $a_{n}=a_{n-1}+5$
d. $a_{n}=a_{n-1}+7$
a. a positive function that is increasing
b. a positive function that is decreasing
c. a negative function that
is increasing
d. a negative function that
is decreasing

MGSE9-12.F.IF. 5

Turner Field, home of the Atlanta Braves, is capable of seating 56,790 fans. For each game, the amount of money that the Braves’
organization brings in as revenue is a function of
the number of people, n, in
attendance. If each ticket costs \$16,
what is the domain of this function?
a. $0 \leq \mathrm{n} \leq 56,790$
b. $16 \leq \mathrm{n} \leq 56,790$
c. $0 \leq \mathrm{n} \leq 908,640$
d. $16 \leq \mathrm{n} \leq 908,640$

MGSE9-12.F.IF. 6

The rate of change is constant.
Determine the rate of change and
what the rate of change means for the situation.

Time (hours)	Distance (miles)
4	212
6	318
8	424
10	530

Since Sally is selling 1 necklace at a time and cannot sell negative necklaces, a reasonable domain for this function is the whole numbers.
c. Graph the function.

d. Identify and interpret the intercepts of the function.
The n - and R -intercepts are both 0 . The intercept indicates that Sally will earn no revenue if she sells no necklaces.

MGSE9-12.F.IF.7a

What are the intercepts of the linear function shown?

GSE Algebra 1 - Unit 2

GSE Algebra 1 - Unit 2

At the end of Unit 2 student's should be able to say "I can..."

o Justify the solution of a linear equation and inequality in one variable.
o Justify the solution to a system of 2 equations in two variables.
o Solve a system of linear equations in 2 variables by graphing.
o Graph a linear inequality in 2 variables.
o Explain what it means when two graphs $\{y=f(x)$ and $y=g(x)\}$ intersect.
o Define and use function notation, evaluate functions at any point in the domain, give general statements about how $f(x)$ behaves at different regions in the domain (as x gets very large or very negative, close to 0 etc.), and interpret statements that use function notation.
o Explain the difference and relationship between domain and range and find the domain and range of a function from a function equation, table or graph.
o Explain why sequences are functions.
o Interpret x and y intercepts, where the function is increasing or decreasing, where it is positive or negative, its end behaviors, given the graph, table or algebraic representation of a linear function in terms of the context of the function.
o Find and/or interpret appropriate domains and ranges for authentic linear functions.
o Calculate and interpret the average rate of change over a given interval of a function from a function equation, graph or table, and explain what that means in terms of the context of the function.
o Estimate the rate of change of a function from its graph at any point in its domain.
o Explain the relationship between the domain of a function and its graph in general and/or to the context of the function.
o Accurately graph a linear function by hand by identifying key features of the function such as the x - and y intercepts and slope.
o Write recursive and explicit formulas for arithmetic sequences.

