UNIT 1 • RELATIONSHIPS BETWEEN QUANTITIES AND EXPRESSIONS

Lesson 3: Interpreting Formulas and Expressions

Instruction

Guided Practice 1.3.2

Example 1

Find the sum of $(4+3 x)+(2+x)$.

1. Rewrite the sum so that like terms are together.

There are two numeric quantities, 4 and 2, and two terms that contain a variable, $3 x$ and x. All the terms are positive.

$$
\begin{aligned}
& (4+3 x)+(2+x) \\
& =4+2+3 x+x
\end{aligned}
$$

2. Find the sum of any numeric quantities.

The numeric quantities in this example are 4 and 2.

$$
\begin{aligned}
& 4+2+3 x+x \\
& =6+3 x+x
\end{aligned}
$$

3. Find the sum of any terms with the same variable raised to the same power.

The two terms $3 x$ and x both contain only the variable x raised to the first power.

$$
\begin{aligned}
& 6+3 x+x \\
& =6+4 x
\end{aligned}
$$

The result of $(4+3 x)+(2+x)$ is $6+4 x$.

UNIT 1•RELATIONSHIPS BETWEEN QUANTITIES AND EXPRESSIONS
Lesson 3: Interpreting Formulas and Expressions
Instruction

Example 2

Find the sum of $\left(7 x^{2}-x+15\right)+(6 x+12)$.

1. Rewrite the sum so that like terms are together.

Be sure to keep any negatives with the expression that follows, such as $-x$.

$$
\begin{aligned}
& \left(7 x^{2}-x+15\right)+(6 x+12) \\
& =7 x^{2}-x+6 x+15+12
\end{aligned}
$$

2. Find the sum of any numeric quantities.

$$
\begin{aligned}
& 7 x^{2}-x+6 x+15+12 \\
& =7 x^{2}-x+6 x+27
\end{aligned}
$$

3. Find the sum of any terms with the same variable raised to the same power.
There is only one term with the variable x raised to the second power.
There are two terms with the variable x raised to the first power, $-x$ and $6 x$, so these can be combined.

Add the coefficients of the variable.

$$
\begin{aligned}
& 7 x^{2}-x+6 x+27 \\
& =7 x^{2}+5 x+27
\end{aligned}
$$

The result of $\left(7 x^{2}-x+15\right)+(6 x+12)$ is $7 x^{2}+5 x+27$.

UNIT 1 • RELATIONSHIPS BETWEEN QUANTITIES AND EXPRESSIONS

Lesson 3: Interpreting Formulas and Expressions

Instruction

Example 3

Find the difference of $\left(x^{5}+8\right)-\left(3 x^{5}+5 x\right)$.

1. Rewrite the difference as a sum.

A difference can be written as a sum by adding the opposite of the second expression.

Simplify " $-\left(3 x^{5}+5 x\right)$ " by distributing -1 and writing the polynomial as $\left(-3 x^{5}-5 x\right)$.

$$
\begin{aligned}
& \left(x^{5}+8\right)-\left(3 x^{5}+5 x\right) \\
& =\left(x^{5}+8\right)+\left[-1\left(3 x^{5}+5 x\right)\right] \\
& =\left(x^{5}+8\right)+\left(-3 x^{5}-5 x\right)
\end{aligned}
$$

2. Rewrite the sum so that any like terms are together.

Be sure to keep any negatives with the expression that follows, such as $-3 x^{5}$.

$$
\begin{aligned}
& \left(x^{5}+8\right)+\left(-3 x^{5}-5 x\right) \\
& =x^{5}+\left(-3 x^{5}\right)+(-5 x)+8
\end{aligned}
$$

3. Find the sum of any terms with the same variable raised to the same power.

There are two terms with the variable x raised to the fifth power.
There is only one term with x raised to the first power, and only one numeric quantity.
The sum of the two terms with x^{5} can be combined by adding their coefficients.

$$
\begin{aligned}
& x^{5}+\left(-3 x^{5}\right)+(-5 x)+8 \\
& =-2 x^{5}-5 x+8
\end{aligned}
$$

The result of $\left(x^{5}+8\right)-\left(3 x^{5}+5 x\right)$ is $-2 x^{5}-5 x+8$.

