Introduction

Thoughts or feelings in language are often conveyed through expressions; similarly, mathematical ideas are conveyed through algebraic expressions. Algebraic expressions are mathematical statements that include numbers, operations, and variables to represent a number or quantity. Variables are letters used to represent values or unknown quantities that can change or vary. One example of an algebraic expression is 3x - 4. Notice the variable, *x*.

Instruction Identifying Terms, Factors, and Coefficients

Key Concepts

- Expressions are made up of terms. A term is a number, a variable, or the product of a number and variable(s). An addition or subtraction sign separates each term of an expression.
- For example, in the expression $4x^2 + 3x + 7$, there are 3 terms: $4x^2$, 3x, and 7.
- The **factors** of each term are the numbers or expressions that when multiplied produce a given product. In the expression $4x^2 + 3x + 7$, the factors of $4x^2$ are 4 and x^2 . The factors of 3x are 3 and x.

Key Concepts, continued

- Numbers have factors as well. For example, the factors of 7 are 1 and 7. *Note*: In this lesson, when asked for the "factors of a term," you are being asked to find the factors that make up an *algebraic* (non-constant) term.
- A **coefficient** is the number multiplied by a variable in an algebraic expression. In the terms $4x^2$ and 3x, 4 is the coefficient of $4x^2$ and 3 is the coefficient of 3x.
- The term 4x² also has an exponent. Exponents indicate the number of times a factor is being multiplied by itself. In this term, 2 is the exponent and indicates that x is multiplied by itself 2 times.

Instruction

Identifying Terms, Factors, and Coefficients

3

Key Concepts, continued

- Terms that do not contain a variable are called **constant** terms because the quantity does not change. In this example, 7 is the constant term.
- The table that follows summarizes the parts of the expression $4x^2 + 3x + 7$.

Expression	$4x^2 + 3x + 7$		
Terms	4 <i>x</i> ²	3 <i>x</i>	7
Factors	4 and x^2	3 and <i>x</i>	1 and 7
Coefficients	4	3	
Constants			7

Identifying Terms, Factors, and Coefficients

Key Concepts, continued

• Terms with the same variable raised to the same exponent are called **like terms**. In the example 5x + 3x - 9, 5x and 3x are like terms. Like terms can be combined following the **order of operations** by evaluating grouping symbols, evaluating exponents, completing multiplication and division, and completing addition and subtraction from left to right. In this example, the sum of 5x and 3x is 8x.

Common Errors/Misconceptions

- incorrectly following the order of operations
- incorrectly identifying like terms
- incorrectly combining terms involving subtraction

Guided Practice

Example 2

A smartphone is on sale for 25% off its regular price. The sale price of the smartphone is \$149.25. What expression can be used to represent the regular price of the smartphone? Identify each term, the constant term, and the factors and coefficients of the terms that contain a variable.

1. Translate the verbal expression into an algebraic expression.

First, describe the situation. The regular price is found by adding the discount amount to the sale price:

sale price + discount amount

We know that the sale price is \$149.25. The discount amount is found by multiplying the discount percent by the unknown regular price. The discount percent is 25%, or written as a decimal, 0.25.

Let x represent the unknown regular price. Therefore, the algebraic expression that represents the regular price of the smartphone is 149.25 + 0.25x.

9

2. Identify each term in the algebraic expression.

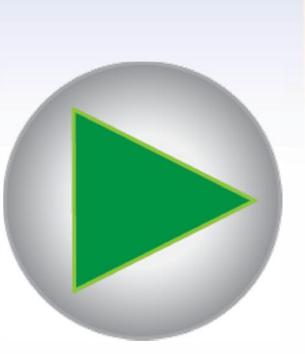
There are two terms in the expression: 149.25 and 0.25x. The term 149.25 represents the sale price, and 0.25x represents the discount.

3. Identify any factors of the non-constant term(s).

0.25x is the product of the factors 0.25 and x.

4. Identify any coefficients of the nonconstant term(s).

0.25 is multiplied by the variable, *x*; therefore, 0.25 is a coefficient.


5. Identify any constant terms.

The term that does not change in the expression is 149.25. Therefore, 149.25 is the constant term.

(x) (2) (Instruction Identifying Terms, Factors, and Coefficients

Guided Practice

Example 3

Helen purchased 3 books from an online bookstore and received a 20% discount on her total order. Each book cost the same amount. The shipping cost was \$10 and was not discounted. Write an expression that can be used to represent the total amount Helen paid for 3 books plus the shipping cost. Simplify the expression, and then identify each term, the constant term, and the factors and coefficients of the terms that contain a variable.

1. Translate the verbal expression into an algebraic expression.

First, describe the situation. The total amount Helen paid can be found by subtracting the discount amount from the price of the 3 books, then adding the shipping cost:

price of 3 books – discount amount + shipping cost

Let x represent the unknown price of 1 book. Multiply x by the number of books purchased. Helen bought 3 books, so the term 3x represents the price of the books.

Helen received 20% off the price of the books. Written as a decimal, 20% is equal to 0.20. The amount of the discount Helen received off the price of the 3 books can be found by multiplying 0.20 by 3x. So, 0.20(3x) represents the discount amount.

Finally, Helen paid an additional \$10 for shipping. This represents the shipping cost.

The algebraic expression used to represent the total amount Helen paid for the 3 books plus shipping is 3x - 0.20(3x) + 10.

2. Simplify the expression.

The expression can be simplified by following the order of operations and combining like terms.

3 <i>x</i> – 0.20(3 <i>x</i>) + 10	Expression from the previous step	
3 <i>x</i> – 0.60 <i>x</i> + 10	Multiply 0.20 and 3 <i>x</i> .	
2.4 <i>x</i> + 10	Combine like terms: add 3 <i>x</i> and –0.60 <i>x</i> .	

The simplified expression representing the total amount Helen paid for the books is 2.4x + 10.

Instruction

Identifying Terms, Factors, and Coefficients

3. Identify each term in the simplified expression.

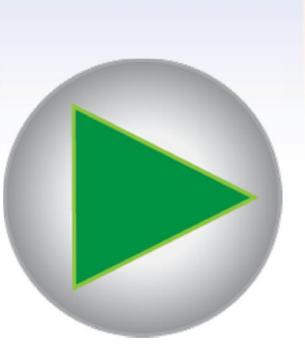
There are two terms in the simplified expression: 2.4x and 10. The term 2.4x represents the price of the books minus the discount, and 10 represents the shipping cost.

4. Identify any factors of the non-constant term(s).

2.4x is the product of the factors 2.4 and x.

5. Identify any coefficients of non-constant term(s).

2.4 is multiplied by the variable, *x*; therefore, 2.4 is a coefficient.


6. Identify any constant terms.

The term that does not change in the expression is 10. Therefore, 10 is the constant term.

22

