UNIT 1• RELATIONSHIPS BETWEEN QUANTITIES AND EXPRESSIONS

Guided Practice 1.3.3

Example 1

Find the product of $(2 x-1)(x+18)$.

1. Distribute the first polynomial over the second.

Ensure that any negative signs are included in the products where appropriate.

$$
\begin{aligned}
& (2 x-1)(x+18) \\
& =2 x \cdot x+2 x \cdot 18+(-1) \cdot x+(-1) \cdot 18
\end{aligned}
$$

2. Use properties of exponents to simplify any expressions.
x is x to the first power, or x^{1}.

$$
\begin{aligned}
& 2 x \cdot x \\
& =2 x^{1} \cdot x^{1} \\
& =2 x^{1+1} \\
& =2 x^{2}
\end{aligned}
$$

Rewrite the expression, substituting $2 x^{2}$ for $2 x \bullet x$.

$$
\begin{aligned}
& 2 x \cdot x+2 x \cdot 18+(-1) \cdot x+(-1) \cdot 18 \\
& =2 x^{2}+2 x \cdot 18+(-1) \cdot x+(-1) \cdot 18
\end{aligned}
$$

3. Simplify any remaining products.

The coefficient of a term can be multiplied by a number: $a x \bullet b=a b x$.

$$
\begin{aligned}
& 2 x^{2}+2 x \cdot 18+(-1) \cdot x+(-1) \cdot 18 \\
& =2 x^{2}+36 x-x-18
\end{aligned}
$$

4. Combine any like terms.

$$
\begin{aligned}
& 2 x^{2}+36 x-x-18 \\
& =2 x^{2}+35 x-18
\end{aligned}
$$

The result of $(2 x-1)(x+18)$ is $2 x^{2}+35 x-18$.

UNIT 1 • RELATIONSHIPS BETWEEN QUANTITIES AND EXPRESSIONS

Lesson 3: Interpreting Formulas and Expressions

Instruction

Example 2

Find the product of $\left(x^{3}+9 x\right)\left(-x^{2}+11\right)$.

1. Distribute the first polynomial over the second.

Ensure that any negatives are included in the products where appropriate.

$$
\begin{aligned}
& \left(x^{3}+9 x\right)\left(-x^{2}+11\right) \\
& =x^{3} \cdot\left(-x^{2}\right)+x^{3} \cdot 11+9 x \cdot\left(-x^{2}\right)+9 x \cdot 11
\end{aligned}
$$

2. Use properties of exponents to simplify like exponential expressions.

To multiply terms that have the same base (in this case, x), keep this base and add the exponents: $x^{m} \cdot x^{n}=x^{(m+n)}$.

$$
\begin{aligned}
& =x^{3} \cdot\left(-x^{2}\right)+x^{3} \cdot 11+9 x \cdot\left(-x^{2}\right)+9 x \cdot 11 \\
& =-x^{3+2}+x^{3} \cdot 11-9 x^{1+2}+9 x \cdot 11 \\
& =-x^{5}+x^{3} \cdot 11-9 x^{3}+9 x \cdot 11
\end{aligned}
$$

3. Simplify any remaining products.

The coefficient of a term can be multiplied by a number: $a x \bullet b=a b x$.

$$
\begin{aligned}
& -x^{5}+11 \cdot x^{3}-9 x^{3}+9 x \cdot 11 \\
& =-x^{5}+11 x^{3}-9 x^{3}+99 x
\end{aligned}
$$

4. Combine any like terms.

$$
\begin{aligned}
& -x^{5}+11 x^{3}-9 x^{3}+99 x \\
& =-x^{5}+2 x^{3}+99 x
\end{aligned}
$$

The result of $\left(x^{3}+9 x\right)\left(-x^{2}+11\right)$ is $-x^{5}+2 x^{3}+99 x$.

UNIT 1 • RELATIONSHIPS BETWEEN QUANTITIES AND EXPRESSIONS

Example 3

Find the product of $(3 x+4)\left(x^{2}+6 x+10\right)$.

1. Distribute the first polynomial over the second.

Multiply each term in the first polynomial by each term in the second polynomial.

$$
\begin{aligned}
& (3 x+4)\left(x^{2}+6 x+10\right) \\
& =3 x \bullet x^{2}+3 x \cdot 6 x+3 x \cdot 10+4 \cdot x^{2}+4 \cdot 6 x+4 \cdot 10
\end{aligned}
$$

2. Use properties of exponents to simplify any expressions.

$$
\begin{aligned}
& 3 x \cdot x^{2}+3 x \bullet 6 x+3 x \cdot 10+4 \cdot x^{2}+4 \cdot 6 x+4 \cdot 10 \\
& =3 x^{3}+18 x^{2}+3 x \cdot 10+4 \bullet x^{2}+4 \cdot 6 x+4 \cdot 10
\end{aligned}
$$

3. Simplify any remaining products.

$$
\begin{aligned}
& 3 x^{3}+18 x^{2}+3 x \cdot 10+4 \cdot x^{2}+4 \cdot 6 x+4 \cdot 10 \\
& =3 x^{3}+18 x^{2}+30 x+4 x^{2}+24 x+40
\end{aligned}
$$

4. Combine any like terms.

Only terms with the same variable raised to the same power can be combined.

The sum can first be rewritten with the exponents in descending order.

$$
\begin{aligned}
& 3 x^{3}+18 x^{2}+30 x+4 x^{2}+24 x+40 \\
& =3 x^{3}+18 x^{2}+4 x^{2}+30 x+24 x+40 \\
& =3 x^{3}+22 x^{2}+54 x+40
\end{aligned}
$$

The result of $(3 x+4)\left(x^{2}+6 x+10\right)$ is $3 x^{3}+22 x^{2}+54 x+40$.

UNIT 1•RELATIONSHIPS BETWEEN QUANTITIES AND EXPRESSIONS

Lesson 3: Interpreting Formulas and Expressions

Instruction

Example 4

Find the product of $(x+y+1)\left(x^{2}+4 y-5\right)$.

1. Distribute the first polynomial over the second.

Multiply each term in the first polynomial by each term in the second polynomial.

$$
\begin{aligned}
& (x+y+1)\left(x^{2}+4 y-5\right) \\
& =x \bullet x^{2}+x \bullet 4 y+x \bullet(-5)+y \bullet x^{2}+y \bullet 4 y+y \bullet(-5)+1 \bullet \\
& x^{2}+1 \bullet 4 y+1 \bullet(-5)
\end{aligned}
$$

2. Use properties of exponents to simplify any expressions.

$$
\begin{aligned}
& x \cdot x^{2}+x \cdot 4 y+x \cdot(-5)+y \cdot x^{2}+y \cdot 4 y+y \cdot(-5)+1 \cdot x^{2}+1 \bullet \\
& 4 y+1 \cdot(-5) \\
& =x^{3}+x \cdot 4 y+x \cdot(-5)+y \cdot x^{2}+4 y^{2}+y \cdot(-5)+1 \cdot x^{2}+1 \bullet \\
& 4 y+1 \cdot(-5)
\end{aligned}
$$

3. Simplify any remaining products.

$$
\begin{aligned}
& x^{3}+x \bullet 4 y+x \cdot(-5)+y \cdot x^{2}+4 y^{2}+y \cdot(-5)+1 \bullet x^{2}+1 \cdot 4 y+1 \bullet(-5) \\
& =x^{3}+4 x y-5 x+x^{2} y+4 y^{2}-5 y+x^{2}+4 y-5
\end{aligned}
$$

4. Combine any like terms.

Only terms with the same variable raised to the same power can be combined.

The sum can first be rewritten with the exponents in descending order.
When two variables are in a term, such as $x^{n} y^{m}$, both n and m, the powers of the two variables, must be the same to combine the terms.

$$
\begin{aligned}
& x^{3}+4 x y-5 x+x^{2} y+4 y^{2}-5 y+x^{2}+4 y-5 \\
& =x^{3}+x^{2}+x^{2} y-5 x+4 x y+4 y^{2}-5 y+4 y-5 \\
& =x^{3}+x^{2}+x^{2} y-5 x+4 x y+4 y^{2}-y-5
\end{aligned}
$$

The result of $(x+y+1)\left(x^{2}+4 y-5\right)$ is
$x^{3}+x^{2}+x^{2} y-5 x+4 x y+4 y^{2}-y-5$.

